Enhanced Piezoelectricity in Sustainable-by-design Chitosan Nanocomposite Elastomers for Prosthetics, Robotics, and Circular Electronics

Jacopo Nicoletti, Leonardo Puppulin, Julie Routurier, Saimir Frroku, Nouha Loudhaief, Claudia Crestini, Alvise Perosa, Maurizio Selva, Matteo Gigli, Domenico De Fazio, Giovanni Antonio Salvatore
{"title":"Enhanced Piezoelectricity in Sustainable-by-design Chitosan Nanocomposite Elastomers for Prosthetics, Robotics, and Circular Electronics","authors":"Jacopo Nicoletti, Leonardo Puppulin, Julie Routurier, Saimir Frroku, Nouha Loudhaief, Claudia Crestini, Alvise Perosa, Maurizio Selva, Matteo Gigli, Domenico De Fazio, Giovanni Antonio Salvatore","doi":"arxiv-2407.18585","DOIUrl":null,"url":null,"abstract":"Piezoelectricity, the generation of electric charge in response to mechanical\nstress, is a key property in both natural and synthetic materials. This study\nsignificantly boosts the piezoelectric response of chitosan, a biodegradable\nbiopolymer, by integrating chitin/chitosan nanocrystals into natural\nchitosan-based thin film elastomers. The resulting materials achieve d$_{33}$\nvalues of 15-19 pmV$^{-1}$, a marked improvement over the 5-9 pmV$^{-1}$\nobserved in pure chitosan films thanks to increased crystallinity from the\nnanocrystals. We utilize piezoresponse force microscopy (PFM) to accurately\nmeasure the d$_{33}$ coefficient, employing an engineered extraction method\nthat eliminates the electrostatic contribution, which can overestimate the\npiezoelectric response. The resulting chitosan elastomers exhibit elastic\ndeformation up to 40\\% strain and a Young's modulus of approximately 100 MPa,\nsimilar to soft tissues. These properties, along with the fact that the\nemployed materials can be entirely crafted from upcycled biowaste, make these\nelastomers ideal for prosthetics, wearable devices, energy harvesters, and\nsustainable transducers. Our findings underscore the potential of\nchitosan-based piezoelectric materials for advanced applications in\nbiotechnology, soft robotics, and the green Internet of Things.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"363 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectricity, the generation of electric charge in response to mechanical stress, is a key property in both natural and synthetic materials. This study significantly boosts the piezoelectric response of chitosan, a biodegradable biopolymer, by integrating chitin/chitosan nanocrystals into natural chitosan-based thin film elastomers. The resulting materials achieve d$_{33}$ values of 15-19 pmV$^{-1}$, a marked improvement over the 5-9 pmV$^{-1}$ observed in pure chitosan films thanks to increased crystallinity from the nanocrystals. We utilize piezoresponse force microscopy (PFM) to accurately measure the d$_{33}$ coefficient, employing an engineered extraction method that eliminates the electrostatic contribution, which can overestimate the piezoelectric response. The resulting chitosan elastomers exhibit elastic deformation up to 40\% strain and a Young's modulus of approximately 100 MPa, similar to soft tissues. These properties, along with the fact that the employed materials can be entirely crafted from upcycled biowaste, make these elastomers ideal for prosthetics, wearable devices, energy harvesters, and sustainable transducers. Our findings underscore the potential of chitosan-based piezoelectric materials for advanced applications in biotechnology, soft robotics, and the green Internet of Things.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可持续设计增强壳聚糖纳米复合弹性体的压电性,用于假肢、机器人和循环电子设备
压电性是指在机械应力作用下产生电荷,它是天然材料和合成材料的一个重要特性。这项研究通过将甲壳素/壳聚糖纳米晶体整合到天然壳聚糖基薄膜弹性体中,显著提高了壳聚糖(一种可生物降解的生物聚合物)的压电响应。与纯壳聚糖薄膜中 5-9 pmV$^{-1}$ 的值相比,这种材料的 d$_{33}$ 值达到了 15-19 pmV$^{-1}$,这要归功于纳米晶体结晶度的提高。我们利用压电响应力显微镜(PFM)精确测量了 d$_{33}$ 系数,并采用了一种工程提取方法,消除了可能会高估压电响应的静电贡献。由此产生的壳聚糖弹性体表现出高达 40% 应变的弹性形变,杨氏模量约为 100 兆帕,与软组织相似。这些特性以及所使用的材料可以完全由可回收的生物废料制成这一事实,使这些弹性体成为假肢、可穿戴设备、能量收集器和可持续传感器的理想材料。我们的研究结果强调了壳聚糖基压电材料在生物技术、软机器人和绿色物联网等先进应用领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuromorphic Spintronics Corotation of two quantized vortices coupled with collective modes in self-gravitating Bose-Einstein condensates Tuned ionic mobility by Ultrafast-laser pulses in Black Silicon CAVERNAUTE: a design and manufacturing pipeline of a rigid but foldable indoor airship aerial system for cave exploration Switchable Crystalline Islands in Super Lubricant Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1