Isoflavone Derivatives as Potential Anticancer Agents: Synthesis and Bioactivity Studies.

IF 3.6 4区 医学 Q2 CHEMISTRY, MEDICINAL ChemMedChem Pub Date : 2024-08-02 DOI:10.1002/cmdc.202400420
Mamoalosi A Selepe
{"title":"Isoflavone Derivatives as Potential Anticancer Agents: Synthesis and Bioactivity Studies.","authors":"Mamoalosi A Selepe","doi":"10.1002/cmdc.202400420","DOIUrl":null,"url":null,"abstract":"<p><p>Isoflavones are phenolic natural compounds with a C<sub>6</sub>C<sub>3</sub>C<sub>6</sub> framework. They possess a plethora of biological activities that are associated with putative benefits to human health. In particular, the cancer chemopreventive and chemotherapeutic potential of isoflavones has attracted the interest of researchers. Several isoflavone derivatives have been synthesised and probed for their anticancer activities. The isoflavone analogues are mainly synthesised by molecular hybridisation and other strategies that enable diversification through early or late-stage functionalisation of A-, B- and C-rings of the isoflavones. This has resulted in the discovery of isoflavone analogues with improved antiproliferative activities against several cancer cells and different mechanisms of action. In this review, the synthesis of isoflavone derivatives and their anticancer activity studies are discussed.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400420","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Isoflavones are phenolic natural compounds with a C6C3C6 framework. They possess a plethora of biological activities that are associated with putative benefits to human health. In particular, the cancer chemopreventive and chemotherapeutic potential of isoflavones has attracted the interest of researchers. Several isoflavone derivatives have been synthesised and probed for their anticancer activities. The isoflavone analogues are mainly synthesised by molecular hybridisation and other strategies that enable diversification through early or late-stage functionalisation of A-, B- and C-rings of the isoflavones. This has resulted in the discovery of isoflavone analogues with improved antiproliferative activities against several cancer cells and different mechanisms of action. In this review, the synthesis of isoflavone derivatives and their anticancer activity studies are discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为潜在抗癌剂的异黄酮衍生物:合成与生物活性研究。
异黄酮是一种具有 C6C3C6 框架的酚类天然化合物。它们具有多种生物活性,可能对人类健康有益。特别是异黄酮的癌症化学预防和化学治疗潜力引起了研究人员的兴趣。已经合成了几种异黄酮衍生物,并对其抗癌活性进行了研究。异黄酮类似物主要是通过分子杂交和其他策略合成的,这些策略通过对异黄酮的 A 环、B 环和 C 环进行早期或晚期的官能化来实现多样化。因此,人们发现了异黄酮类似物,它们对多种癌细胞具有更好的抗增殖活性,并具有不同的作用机制。本综述将讨论异黄酮衍生物的合成及其抗癌活性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemMedChem
ChemMedChem 医学-药学
CiteScore
6.70
自引率
2.90%
发文量
280
审稿时长
1 months
期刊介绍: Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs. Contents ChemMedChem publishes an attractive mixture of: Full Papers and Communications Reviews and Minireviews Patent Reviews Highlights and Concepts Book and Multimedia Reviews.
期刊最新文献
Biosourced Au(III) Complexes from D-Xylose: Synthesis and Biological Evaluation. Insights Into Molecular Interactions and Biological Effect of Natural Stilbenoids at The TRPA1 Ion Channel. Diversity Oriented Strategy (DOS) for the Efficient Synthesis of Benzofuro[2,3-b]pyridine Derivatives with Anticancer Activity. Front Cover: Development of a NanoBRET Assay Platform to Detect Intracellular Ligands for the Chemokine Receptors CCR6 and CXCR1 (ChemMedChem 20/2024) Cover Feature: The IMS Library: from IN-Stock to Virtual (ChemMedChem 20/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1