A Light-Powered In Vitro Synthetic Enzymatic Biosystem for the Synthesis of 3-Hydroxypropionic Acid via CO2 Fixation.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-08-16 Epub Date: 2024-08-02 DOI:10.1021/acssynbio.4c00447
Xiao Ning, Fei Li, Xinlei Wei, Zhiguang Zhu, Chun You
{"title":"A Light-Powered <i>In Vitro</i> Synthetic Enzymatic Biosystem for the Synthesis of 3-Hydroxypropionic Acid via CO<sub>2</sub> Fixation.","authors":"Xiao Ning, Fei Li, Xinlei Wei, Zhiguang Zhu, Chun You","doi":"10.1021/acssynbio.4c00447","DOIUrl":null,"url":null,"abstract":"<p><p>3-Hydroxypropionic acid (3-HP) is a highly sought-after platform chemical serving as a precursor to a variety of high value-added chemical products. In this study, we designed and constructed a novel light-powered <i>in vitro</i> synthetic enzymatic biosystem comprising acetyl-CoA ligase, acetyl-CoA carboxylase, malonyl-CoA reductase, and phosphotransferase to efficiently produce 3-HP through CO<sub>2</sub> fixation from acetate, a cost-effective and readily available substrate. The system employed natural thylakoid membranes (TMs) for the regeneration of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Comprehensive investigations were conducted on the effects of buffer solutions, substrate concentrations, enzyme loading levels, and TMs loading levels to optimize the yield of 3-HP. Following optimization, a production of 0.46 mM 3-HP was achieved within 6 h from an initial 0.5 mM acetate, with a yield nearing 92%. This work underscores the simplicity of 3-HP production via an <i>in vitro</i> biomanufacturing platform and highlights the potential for incorporating TMs as a sustainable and environmentally friendly approach in biomanufacturing processes.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00447","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

3-Hydroxypropionic acid (3-HP) is a highly sought-after platform chemical serving as a precursor to a variety of high value-added chemical products. In this study, we designed and constructed a novel light-powered in vitro synthetic enzymatic biosystem comprising acetyl-CoA ligase, acetyl-CoA carboxylase, malonyl-CoA reductase, and phosphotransferase to efficiently produce 3-HP through CO2 fixation from acetate, a cost-effective and readily available substrate. The system employed natural thylakoid membranes (TMs) for the regeneration of adenosine triphosphate and nicotinamide adenine dinucleotide phosphate. Comprehensive investigations were conducted on the effects of buffer solutions, substrate concentrations, enzyme loading levels, and TMs loading levels to optimize the yield of 3-HP. Following optimization, a production of 0.46 mM 3-HP was achieved within 6 h from an initial 0.5 mM acetate, with a yield nearing 92%. This work underscores the simplicity of 3-HP production via an in vitro biomanufacturing platform and highlights the potential for incorporating TMs as a sustainable and environmentally friendly approach in biomanufacturing processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过二氧化碳固定合成 3-羟基丙酸的光动力体外合成酶生物系统。
3-羟基丙酸(3-HP)是一种备受追捧的平台化学品,是多种高附加值化学产品的前体。在这项研究中,我们设计并构建了一种新型光动力体外合成酶生物系统,该系统由乙酰-CoA 连接酶、乙酰-CoA 羧化酶、丙二酰-CoA 还原酶和磷酸转移酶组成,可通过固定醋酸纤维(一种成本效益高且易于获得的底物)中的 CO2 来高效生产 3-HP。该系统利用天然的类木质膜(TMs)进行三磷酸腺苷和烟酰胺腺嘌呤二核苷酸磷酸的再生。为了优化 3-HP 的产量,对缓冲溶液、底物浓度、酶负载水平和 TMs 负载水平的影响进行了全面研究。经过优化,在 6 小时内从初始的 0.5 毫摩尔醋酸盐生产出了 0.46 毫摩尔 3-HP,产率接近 92%。这项工作强调了通过体外生物制造平台生产 3-HP 的简易性,并突出了将 TMs 作为一种可持续的环保方法纳入生物制造过程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Genetically Encoded Trensor Circuits Report HeLa Cell Treatment with Polyplexed Plasmid DNA and Small-Molecule Transfection Modulators. Orthogonal Serine Integrases Enable Scalable Gene Storage Cascades in Bacterial Genome. Computational Synthetic Biology Enabled through JAX: A Showcase. Dynamically Regulating Homologous Recombination Enables Precise Genome Editing in Ogataea polymorpha. Integrating Deep Learning and Synthetic Biology: A Co-Design Approach for Enhancing Gene Expression via N-Terminal Coding Sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1