Feasibility of a Fiber-Dispersive Raman Spectrometer for Biomarker Detection.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION Applied Spectroscopy Pub Date : 2024-10-01 Epub Date: 2024-08-18 DOI:10.1177/00037028241267892
Mariia Sidorova, Sergey G Pavlov, Ute Böttger, Mickael Baqué, Alexei D Semenov, Heinz-Wilhelm Hübers
{"title":"Feasibility of a Fiber-Dispersive Raman Spectrometer for Biomarker Detection.","authors":"Mariia Sidorova, Sergey G Pavlov, Ute Böttger, Mickael Baqué, Alexei D Semenov, Heinz-Wilhelm Hübers","doi":"10.1177/00037028241267892","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy is among the top analytical techniques for ultra-low-dense organic matter, crucial to the search for life and analysis of celestial body surfaces in space exploration missions. Achieving the ultimate sensitivity of in-situ Raman spectroscopy necessitates a breakthrough in detecting inelastically scattered light. Single-photon detectors (SPDs) operating in photon counting mode, which can differentiate between Raman and luminescence responses, are promising candidates for the challenging scientific requirements. Since large SPD arrays are not yet commercially available, a dispersive element can be adapted to a single-pixel detector. By exploiting chromatic dispersion in optical fibers and picosecond-pulsed excitation, we delay the arrivals of different spectral components onto a single-pixel SPD. This method also separates weak Raman signals from stronger luminescence through correlated time-domain measurements. We study the impact of fiber properties and the excitation wavelength of a pulsed laser on the spectral resolution of the fiber-dispersive Raman spectrometer (FDRS). Additionally, we demonstrate the FDRS's potential for studying biomarkers and discuss its feasibility for analyzing inclusions in ice matrices.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1098-1104"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492548/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241267892","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy is among the top analytical techniques for ultra-low-dense organic matter, crucial to the search for life and analysis of celestial body surfaces in space exploration missions. Achieving the ultimate sensitivity of in-situ Raman spectroscopy necessitates a breakthrough in detecting inelastically scattered light. Single-photon detectors (SPDs) operating in photon counting mode, which can differentiate between Raman and luminescence responses, are promising candidates for the challenging scientific requirements. Since large SPD arrays are not yet commercially available, a dispersive element can be adapted to a single-pixel detector. By exploiting chromatic dispersion in optical fibers and picosecond-pulsed excitation, we delay the arrivals of different spectral components onto a single-pixel SPD. This method also separates weak Raman signals from stronger luminescence through correlated time-domain measurements. We study the impact of fiber properties and the excitation wavelength of a pulsed laser on the spectral resolution of the fiber-dispersive Raman spectrometer (FDRS). Additionally, we demonstrate the FDRS's potential for studying biomarkers and discuss its feasibility for analyzing inclusions in ice matrices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EXPRESS:用于生物标记检测的光纤色散拉曼光谱仪的可行性。
拉曼光谱是超低密度有机物的顶级分析技术之一,对于太空探索任务中寻找生命和分析天体表面至关重要。要实现原位拉曼光谱的终极灵敏度,就必须在非弹性散射光的探测方面取得突破。在光子计数模式下工作的单光子探测器(SPD)可以区分拉曼和发光响应,是满足具有挑战性的科学要求的理想选择。由于大型 SPD 阵列尚未投入市场,因此可将色散元件改装成单像素探测器。通过利用光纤中的色度色散和皮秒脉冲激发,我们可以延迟不同光谱成分到达单像素 SPD 的时间。这种方法还能通过相关时域测量将微弱的拉曼信号与较强的发光信号分离开来。我们研究了光纤特性和脉冲激光器的激发波长对光纤色散拉曼光谱仪(FDRS)光谱分辨率的影响。此外,我们还展示了光纤色散拉曼光谱仪在研究生物标记物方面的潜力,并讨论了它在分析冰基质中夹杂物方面的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
期刊最新文献
Advertising and Front Matter. Raman Spectroscopy Applied to Early Detection of Clostridium Infection in Milk. Conducting Electrospun Poly(3-hexylthiophene-2,5-diyl) Nanofibers: New Strategies for Effective Chemical Doping and its Assessment Using Infrared Spectroscopy. Raman Spectroscopy as an Effective Tool for Assessment of Structural Quality and Polymorphism of Gallium Oxide (Ga2O3) Thin Films. Raman Spectroscopy for Temporally Resolved Combustion Gas Diagnostics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1