Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY Biomolecules & Therapeutics Pub Date : 2024-09-01 Epub Date: 2024-08-02 DOI:10.4062/biomolther.2023.232
Ananda Baral, Pil-Hoon Park
{"title":"Interleukin-1β Signaling Contributes to Cell Cycle Arrest and Apoptotic Cell Death by Leptin via Modulation of AKT and p38MAPK in Hepatocytes.","authors":"Ananda Baral, Pil-Hoon Park","doi":"10.4062/biomolther.2023.232","DOIUrl":null,"url":null,"abstract":"<p><p>Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed <i>in vivo</i> using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained <i>in vivo</i>, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"611-626"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392659/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2023.232","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Leptin, an adipose tissue-derived hormone, has exhibited the potent hepatotoxic effects. However, the underlying molecular mechanisms are not fully understood. In this study, we have elucidated the mechanisms by which leptin exerts cytotoxic effects in hepatocytes, particularly focusing on the role of interleukin-1β (IL-1β) signaling. Leptin significantly induced maturation and secretion of IL-1β in cultured rat hepatocytes. Interestingly, inhibition of IL-1β signaling by pretreatment with an IL-1 receptor antagonist (IL-1Ra) or gene silencing of type I IL-1 receptor (IL-1R1) markedly abrogated leptin-induced cell cycle arrest. The critical role of IL-1β signaling in leptin-induced cell cycle arrest is mediated via upregulation of p16, which acts as an inhibitor of cyclin-dependent kinase. In addition, leptin-induced apoptotic cell death was relieved by inhibition of IL-1β signaling, as determined by annexin V/7-AAD binding assay. Mechanistically, IL-1β signaling contributes to apoptotic cell death and cell cycle arrest by suppressing AKT and activation of p38 mitogen-activated protein kinase (p38MAPK) signaling pathways. Involvement of IL-1β signaling in cytotoxic effect of leptin was further confirmed in vivo using hepatocyte specific IL-1R1 knock out (IL-1R1 KO) mice. Essentially similar results were obtained in vivo, where leptin administration caused the upregulation of apoptotic markers, dephosphorylation of AKT, and p38MAPK activation were observed in wild type mice liver without significant effects in the livers of IL-1R1 KO mice. Taken together, these results demonstrate that IL-1β signaling critically contributes to leptin-induced cell cycle arrest and apoptosis, at least in part, by modulating p38MAPK and AKT signaling pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白细胞介素-1β信号通过调节肝细胞中的 AKT 和 p38MAPK 促使细胞周期停滞和瘦素导致细胞凋亡
瘦素是一种源自脂肪组织的激素,具有强烈的肝毒性作用。然而,其潜在的分子机制尚未完全明了。在这项研究中,我们阐明了瘦素在肝细胞中发挥细胞毒性作用的机制,特别是白细胞介素-1β(IL-1β)信号传导的作用。瘦素能明显诱导培养的大鼠肝细胞成熟和分泌 IL-1β。有趣的是,用IL-1受体拮抗剂(IL-1Ra)或I型IL-1受体(IL-1R1)基因沉默预处理抑制IL-1β信号传导,可明显减弱瘦素诱导的细胞周期停滞。IL-1β信号在瘦素诱导的细胞周期停滞中的关键作用是通过上调作为细胞周期蛋白依赖性激酶抑制剂的p16介导的。此外,通过附件素V/7-AAD结合测定,抑制IL-1β信号传导可缓解瘦素诱导的细胞凋亡。从机制上讲,IL-1β信号通过抑制AKT和激活p38丝裂原活化蛋白激酶(p38MAPK)信号通路导致细胞凋亡和细胞周期停滞。利用肝细胞特异性IL-1R1基因敲除(IL-1R1 KO)小鼠在体内进一步证实了IL-1β信号传导参与了瘦素的细胞毒性作用。在体内也得到了基本相似的结果,在野生型小鼠肝脏中,瘦素给药导致凋亡标志物上调、AKT去磷酸化和p38MAPK活化,而在IL-1R1 KO小鼠肝脏中没有明显影响。综上所述,这些结果表明,IL-1β信号至少在一定程度上通过调节p38MAPK和AKT信号通路,对瘦素诱导的细胞周期停滞和细胞凋亡起到了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
8.10%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.
期刊最新文献
Epigenetic Regulation of Nuclear Factor Erythroid-2-Related Factor 2 in Colorectal Cancer Cells Resistant to Ionizing Radiation. The Dual Role of Survival Genes in Neurons and Cancer Cells: a Strategic Clinical Application of DX2 in Neurodegenerative Diseases and Cancer. New Insights into AMPK, as a Potential Therapeutic Target in Metabolic Dysfunction-Associated Steatotic Liver Disease and Hepatic Fibrosis. An Overview of Existing and Emerging Weight-Loss Drugs to Target Obesity-Related Complications: Insights from Clinical Trials. C-Peptide Ameliorates Particulate Matter 2.5-Induced Skin Cell Apoptosis by Inhibiting NADPH Oxidation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1