The impact of diffusion on receptor binding during synaptic transmission.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2024-09-17 Epub Date: 2024-07-31 DOI:10.1016/j.bpj.2024.07.038
Meyer B Jackson
{"title":"The impact of diffusion on receptor binding during synaptic transmission.","authors":"Meyer B Jackson","doi":"10.1016/j.bpj.2024.07.038","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the importance of speed in synaptic transmission, in many synapses, neurotransmitters bind to their receptors at rates that appear to be slower than the diffusion limit. This assessment is generally based on a comparison with the Smoluchowski limit rather than an independent experimental analysis. In many synapses, miniature excitatory postsynaptic currents (mEPSCs) are controlled by the interplay between binding to receptors and diffusion of the neurotransmitter out of the synaptic cleft. A model for mEPSCs that incorporates these features was used to evaluate published data showing that elevated viscosity increases mEPSC amplitude. With diffusion-limited binding, the model predicts that raising the viscosity will decrease the amplitude rather than increase it. Diffusion-independent binding predicts an increase that is larger than that observed. To explore the intermediate behavior between the diffusion-limited and diffusion-independent extremes, a general expression for intermolecular rates was used that depends on both collision frequency and intrinsic reactivity. This analysis yielded an estimate for collision frequency that is about an order of magnitude above the measured rate of association and an order of magnitude below the Smoluchowski limit.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.07.038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the importance of speed in synaptic transmission, in many synapses, neurotransmitters bind to their receptors at rates that appear to be slower than the diffusion limit. This assessment is generally based on a comparison with the Smoluchowski limit rather than an independent experimental analysis. In many synapses, miniature excitatory postsynaptic currents (mEPSCs) are controlled by the interplay between binding to receptors and diffusion of the neurotransmitter out of the synaptic cleft. A model for mEPSCs that incorporates these features was used to evaluate published data showing that elevated viscosity increases mEPSC amplitude. With diffusion-limited binding, the model predicts that raising the viscosity will decrease the amplitude rather than increase it. Diffusion-independent binding predicts an increase that is larger than that observed. To explore the intermediate behavior between the diffusion-limited and diffusion-independent extremes, a general expression for intermolecular rates was used that depends on both collision frequency and intrinsic reactivity. This analysis yielded an estimate for collision frequency that is about an order of magnitude above the measured rate of association and an order of magnitude below the Smoluchowski limit.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突触传递过程中扩散对受体结合的影响
尽管速度在突触传递中非常重要,但在许多突触中,神经递质与受体结合的速度似乎慢于扩散极限。这种评估通常基于与斯莫卢霍夫斯基极限的比较,而非独立的实验分析。在许多突触中,微型兴奋性突触后电流(mEPSC)受受体结合和神经递质扩散出突触间隙之间相互作用的控制。一个包含这些特征的 mEPSC 模型被用来评估已发表的数据,这些数据显示粘度升高会增加 mEPSC 的振幅。在扩散受限结合的情况下,该模型预测粘度升高会降低而不是增加振幅。与扩散无关的结合则预测振幅会比观察到的更大。为了探索介于扩散受限和扩散无关两个极端之间的中间行为,我们使用了分子间速率的一般表达式,该表达式取决于碰撞频率和内在反应性。这一分析得出的碰撞频率估计值比测得的结合率高出一个数量级,比斯莫卢霍夫斯基极限低一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Laplace Approximation of J-factors for rigid base and rigid base pair models of DNA cyclization. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. A conserved H-bond network in human aquaporin-1 is necessary for native folding and oligomerization. A computational model for lipid-anchored polysaccharide export by the outer membrane protein GfcD. Estimation of vibrational spectra of Trp-cage protein from nonequilibrium metadynamics simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1