A QR code-enabled framework for fast biomedical image processing in medical diagnosis using deep learning.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2024-08-01 DOI:10.1186/s12880-024-01351-z
Arwa Mashat
{"title":"A QR code-enabled framework for fast biomedical image processing in medical diagnosis using deep learning.","authors":"Arwa Mashat","doi":"10.1186/s12880-024-01351-z","DOIUrl":null,"url":null,"abstract":"<p><p>In the realm of disease prognosis and diagnosis, a plethora of medical images are utilized. These images are typically stored either within the local on-premises servers of healthcare providers or within cloud storage infrastructures. However, this conventional storage approach often incurs high infrastructure costs and results in sluggish information retrieval, ultimately leading to delays in diagnosis and consequential wastage of valuable time for patients. The methodology proposed in this paper offers a pioneering solution to expedite the diagnosis of medical conditions while simultaneously reducing infrastructure costs associated with data storage. Through this study, a high-speed biomedical image processing approach is designed to facilitate rapid prognosis and diagnosis. The proposed framework includes Deep learning QR code technique using an optimized database design aimed at alleviating the burden of intensive on-premises database requirements. The work includes medical dataset from Crawford Image and Data Archive and Duke CIVM for evaluating the proposed work suing different performance metrics, The work has also been compared from the previous research further enhancing the system's efficiency. By providing healthcare providers with high-speed access to medical records, this system enables swift retrieval of comprehensive patient details, thereby improving accuracy in diagnosis and supporting informed decision-making.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01351-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of disease prognosis and diagnosis, a plethora of medical images are utilized. These images are typically stored either within the local on-premises servers of healthcare providers or within cloud storage infrastructures. However, this conventional storage approach often incurs high infrastructure costs and results in sluggish information retrieval, ultimately leading to delays in diagnosis and consequential wastage of valuable time for patients. The methodology proposed in this paper offers a pioneering solution to expedite the diagnosis of medical conditions while simultaneously reducing infrastructure costs associated with data storage. Through this study, a high-speed biomedical image processing approach is designed to facilitate rapid prognosis and diagnosis. The proposed framework includes Deep learning QR code technique using an optimized database design aimed at alleviating the burden of intensive on-premises database requirements. The work includes medical dataset from Crawford Image and Data Archive and Duke CIVM for evaluating the proposed work suing different performance metrics, The work has also been compared from the previous research further enhancing the system's efficiency. By providing healthcare providers with high-speed access to medical records, this system enables swift retrieval of comprehensive patient details, thereby improving accuracy in diagnosis and supporting informed decision-making.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习在医疗诊断中快速处理生物医学图像的 QR 代码框架。
在疾病预后和诊断领域,需要使用大量医学影像。这些图像通常存储在医疗服务提供商的本地服务器或云存储基础设施中。然而,这种传统的存储方法往往会产生高昂的基础设施成本,并导致信息检索缓慢,最终导致诊断延误,从而浪费病人的宝贵时间。本文提出的方法提供了一种开创性的解决方案,既能加快病情诊断,又能降低与数据存储相关的基础设施成本。通过这项研究,我们设计了一种高速生物医学图像处理方法,以促进快速预后和诊断。提出的框架包括使用优化数据库设计的深度学习 QR 码技术,旨在减轻密集型内部数据库需求的负担。这项工作包括来自克劳福德图像和数据档案馆以及杜克大学 CIVM 的医疗数据集,用于评估拟议工作的不同性能指标,这项工作还与之前的研究进行了比较,进一步提高了系统的效率。通过为医疗服务提供者提供对医疗记录的高速访问,该系统能够快速检索病人的全面详细信息,从而提高诊断的准确性并支持知情决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Computed tomography enterography radiomics and machine learning for identification of Crohn's disease. Computer vision applications for the detection or analysis of tuberculosis using digitised human lung tissue images - a systematic review. Computerized tomography features acting as predictors for invasive therapy in the management of Crohn's disease-related spontaneous intra-abdominal abscess: experience from long-term follow-up. Correction: CT coronary fractional flow reserve based on artificial intelligence using different software: a repeatability study. Diagnostic significance of ultrasound characteristics in discriminating follicular thyroid carcinoma from adenoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1