Pub Date : 2024-11-18DOI: 10.1186/s12880-024-01469-0
Peng Huang, Hui Yan, Jiawen Shang, Xin Xie
Background and purpose: Tumor bed (TB) is the residual cavity of resected tumor after surgery. Delineating TB from CT is crucial in generating clinical target volume for radiotherapy. Due to multiple surgical effects and low image contrast, segmenting TB from soft tissue is challenging. In clinical practice, titanium clips were used as marks to guide the searching of TB. However, this information is limited and may cause large error. To provide more prior location information, the tumor regions on both pre-operative and post-operative CTs are both used by the deep learning model in segmenting TB from surrounding tissues.
Materials and methods: For breast cancer patient after surgery and going to be treated by radiotherapy, it is important to delineate the target volume for treatment planning. In clinical practice, the target volume is usually generated from TB by adding a certain margin. Therefore, it is crucial to identify TB from soft tissue. To facilitate this process, a deep learning model is developed to segment TB from CT with the guidance of prior tumor location. Initially, the tumor contour on the pre-operative CT is delineated by physician for surgical planning purpose. Then this contour is transformed to the post-operative CT via the deformable image registration between paired pre-operative and post-operative CTs. The original and transformed tumor regions are both used as inputs for predicting the possible region of TB by the deep-learning model.
Results: Compared to the one without prior tumor contour information, the dice similarity coefficient of the deep-learning model with the prior tumor contour information is improved significantly (0.812 vs. 0.520, P = 0.001). Compared to the traditional gray-level thresholding method, the dice similarity coefficient of the deep-learning model with the prior tumor contour information is improved significantly (0.812 vs.0.633, P = 0.0005).
Conclusions: The prior tumor contours on both pre-operative and post-operative CTs provide valuable information in searching for the precise location of TB on post-operative CT. The proposed method provided a feasible way to assist auto-segmentation of TB in treatment planning of radiotherapy after breast-conserving surgery.
{"title":"Prior information guided deep-learning model for tumor bed segmentation in breast cancer radiotherapy.","authors":"Peng Huang, Hui Yan, Jiawen Shang, Xin Xie","doi":"10.1186/s12880-024-01469-0","DOIUrl":"10.1186/s12880-024-01469-0","url":null,"abstract":"<p><strong>Background and purpose: </strong>Tumor bed (TB) is the residual cavity of resected tumor after surgery. Delineating TB from CT is crucial in generating clinical target volume for radiotherapy. Due to multiple surgical effects and low image contrast, segmenting TB from soft tissue is challenging. In clinical practice, titanium clips were used as marks to guide the searching of TB. However, this information is limited and may cause large error. To provide more prior location information, the tumor regions on both pre-operative and post-operative CTs are both used by the deep learning model in segmenting TB from surrounding tissues.</p><p><strong>Materials and methods: </strong>For breast cancer patient after surgery and going to be treated by radiotherapy, it is important to delineate the target volume for treatment planning. In clinical practice, the target volume is usually generated from TB by adding a certain margin. Therefore, it is crucial to identify TB from soft tissue. To facilitate this process, a deep learning model is developed to segment TB from CT with the guidance of prior tumor location. Initially, the tumor contour on the pre-operative CT is delineated by physician for surgical planning purpose. Then this contour is transformed to the post-operative CT via the deformable image registration between paired pre-operative and post-operative CTs. The original and transformed tumor regions are both used as inputs for predicting the possible region of TB by the deep-learning model.</p><p><strong>Results: </strong>Compared to the one without prior tumor contour information, the dice similarity coefficient of the deep-learning model with the prior tumor contour information is improved significantly (0.812 vs. 0.520, P = 0.001). Compared to the traditional gray-level thresholding method, the dice similarity coefficient of the deep-learning model with the prior tumor contour information is improved significantly (0.812 vs.0.633, P = 0.0005).</p><p><strong>Conclusions: </strong>The prior tumor contours on both pre-operative and post-operative CTs provide valuable information in searching for the precise location of TB on post-operative CT. The proposed method provided a feasible way to assist auto-segmentation of TB in treatment planning of radiotherapy after breast-conserving surgery.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"312"},"PeriodicalIF":2.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1186/s12880-024-01473-4
Yuxin Zhang, Xu Cheng, Xianli Luo, Ruixia Sun, Xiang Huang, Lingling Liu, Min Zhu, Xueling Li
Background: Esophageal fistula (EF), a rare and potentially fatal complication, can be better managed with predictive models for personalized treatment plans in esophageal cancers. We aim to develop a clinical-deep learning radiomics model for effectively predicting the occurrence of EF.
Methods: The study involved esophageal cancer patients undergoing radiotherapy or chemoradiotherapy. Arterial phase enhanced CT images were used to extract handcrafted and deep learning radiomic features. Along with clinical information, a 3-step feature selection method (statistical tests, Least Absolute Shrinkage and Selection Operator, and Recursive Feature Elimination) was used to identify five feature sets in training cohort for constructing random forest EF prediction models. Model performance was compared and validated in both retrospective and prospective test cohorts.
Results: One hundred seventy five patients (122 in training and 53 in test cohort)were retrospectively collected from April 2018 to June 2022. An additional 27 patients were enrolled as a prospective test cohort from June 2022 to December 2023. Post-selection in the training cohort, five feature sets were used for model construction: clinical, handcrafted radiomic, deep learning radiomic, clinical-handcrafted radiomic, and clinical-deep learning radiomic. The clinical-deep learning radiomic model excelled with AUC of 0.89 (95% Confidence Interval: 0.83-0.95) in the training cohort, 0.81 (0.65-0.94) in the test cohort, and 0.85 (0.71-0.97) in the prospective test cohort. Brier-score and calibration curve analyses validated its predictive ability.
Conclusions: The clinical-deep learning radiomic model can effectively predict EF in patients with advanced esophageal cancer undergoing radiotherapy or chemoradiotherapy.
{"title":"Prediction of esophageal fistula in radiotherapy/chemoradiotherapy for patients with advanced esophageal cancer by a clinical-deep learning radiomics model : Prediction of esophageal fistula in radiotherapy/chemoradiotherapy patients.","authors":"Yuxin Zhang, Xu Cheng, Xianli Luo, Ruixia Sun, Xiang Huang, Lingling Liu, Min Zhu, Xueling Li","doi":"10.1186/s12880-024-01473-4","DOIUrl":"10.1186/s12880-024-01473-4","url":null,"abstract":"<p><strong>Background: </strong>Esophageal fistula (EF), a rare and potentially fatal complication, can be better managed with predictive models for personalized treatment plans in esophageal cancers. We aim to develop a clinical-deep learning radiomics model for effectively predicting the occurrence of EF.</p><p><strong>Methods: </strong>The study involved esophageal cancer patients undergoing radiotherapy or chemoradiotherapy. Arterial phase enhanced CT images were used to extract handcrafted and deep learning radiomic features. Along with clinical information, a 3-step feature selection method (statistical tests, Least Absolute Shrinkage and Selection Operator, and Recursive Feature Elimination) was used to identify five feature sets in training cohort for constructing random forest EF prediction models. Model performance was compared and validated in both retrospective and prospective test cohorts.</p><p><strong>Results: </strong>One hundred seventy five patients (122 in training and 53 in test cohort)were retrospectively collected from April 2018 to June 2022. An additional 27 patients were enrolled as a prospective test cohort from June 2022 to December 2023. Post-selection in the training cohort, five feature sets were used for model construction: clinical, handcrafted radiomic, deep learning radiomic, clinical-handcrafted radiomic, and clinical-deep learning radiomic. The clinical-deep learning radiomic model excelled with AUC of 0.89 (95% Confidence Interval: 0.83-0.95) in the training cohort, 0.81 (0.65-0.94) in the test cohort, and 0.85 (0.71-0.97) in the prospective test cohort. Brier-score and calibration curve analyses validated its predictive ability.</p><p><strong>Conclusions: </strong>The clinical-deep learning radiomic model can effectively predict EF in patients with advanced esophageal cancer undergoing radiotherapy or chemoradiotherapy.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"313"},"PeriodicalIF":2.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Ovarian cancer remains a leading cause of death among women, largely due to its asymptomatic early stages and high mortality when diagnosed late. Early detection significantly improves survival rates, and the Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) is currently the most commonly used method, but has limitations in specificity and accuracy. While O-RADS US has standardized reporting, its sensitivity can lead to the misdiagnosis of benign masses as malignant, resulting in overtreatment. This study aimed to construct a nomogram model based on the O-RADS US and clinical and laboratory indicators to predict the malignancy risk of adnexal cystic-solid masses.
Methods: This retrospective study collected data from patients with adnexal cystic-solid masses who underwent ultrasonography and were pathologically confirmed between January 2021 and December 2023 at the First Affiliated Hospital of Shenzhen University. They were categorized into benign and malignant groups according to pathological findings. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to select the most relevant predictors of ovarian cancer. A nomogram model was constructed, and its diagnostic performance was calculated. We bootstrapped the data 500 times to perform internal verification, drew a calibration curve to verify the prediction ability, and performed a decision curve analysis to assess clinical usefulness.
Results: A total of 399 patients with adnexal cystic-solid masses were included in this study: 327 in the benign group and 72 in the malignant group. Five predictors associated with the risk of malignancy of adnexal cystic-solid masses were selected using LASSO regression: O-RADS, acoustic shadowing, postmenopausal status, CA125, and HE4. The area under the curve, sensitivity, specificity, accuracy, positive and negative predictive values of the nomogram were 0.909, 83.3%, 82.9%, 83.0%, 51.7%, and 95.8%, respectively. The calibration curve of the nomogram showed good consistency between the predicted and actual probabilities, and the decision curve showed good clinical usefulness.
Conclusion: The nomogram model based on O-RADS US and clinical and laboratory indicators can be used to predict the risk of malignancy in adnexal cystic-solid masses, with high predictive performance, good calibration, and clinical usefulness.
背景:卵巢癌仍然是导致妇女死亡的主要原因之一,这主要是由于卵巢癌早期无症状,晚期诊断时死亡率很高。早期发现可大大提高生存率,而卵巢-附件报告和数据系统超声检查(O-RADS US)是目前最常用的方法,但在特异性和准确性方面存在局限性。虽然 O-RADS US 具有标准化报告的特点,但其敏感性可能导致良性肿块被误诊为恶性肿块,从而造成过度治疗。本研究旨在构建一个基于 O-RADS US 和临床及实验室指标的提名图模型,以预测附件囊实性肿块的恶性风险:这项回顾性研究收集了2021年1月至2023年12月期间在深圳大学附属第一医院接受超声检查并经病理证实的附件囊实性肿块患者的数据。根据病理结果分为良性和恶性两组。采用最小绝对收缩和选择算子(LASSO)回归分析来选择与卵巢癌最相关的预测因子。我们构建了一个提名图模型,并计算了其诊断性能。我们对数据进行了500次引导以进行内部验证,绘制了校准曲线以验证预测能力,并进行了决策曲线分析以评估临床实用性:结果:本研究共纳入了 399 例附件囊实性肿块患者:良性组 327 例,恶性组 72 例。采用 LASSO 回归法选出了与附件囊实性肿块恶性风险相关的五个预测因子:O-RADS、声影、绝经后状态、CA125 和 HE4。提名图的曲线下面积、灵敏度、特异性、准确性、阳性预测值和阴性预测值分别为 0.909、83.3%、82.9%、83.0%、51.7% 和 95.8%。提名图的校准曲线显示预测概率与实际概率之间具有良好的一致性,决策曲线显示了良好的临床实用性:基于 O-RADS US 和临床及实验室指标的提名图模型可用于预测附件囊实性肿块的恶性肿瘤风险,具有较高的预测性能、良好的校准性和临床实用性。
{"title":"The predictive value of nomogram for adnexal cystic-solid masses based on O-RADS US, clinical and laboratory indicators.","authors":"Chunchun Jin, Meifang Deng, Yanling Bei, Chan Zhang, Shiya Wang, Shun Yang, Lvhuan Qiu, Xiuyan Liu, Qiuxiang Chen","doi":"10.1186/s12880-024-01497-w","DOIUrl":"10.1186/s12880-024-01497-w","url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer remains a leading cause of death among women, largely due to its asymptomatic early stages and high mortality when diagnosed late. Early detection significantly improves survival rates, and the Ovarian-Adnexal Reporting and Data System Ultrasound (O-RADS US) is currently the most commonly used method, but has limitations in specificity and accuracy. While O-RADS US has standardized reporting, its sensitivity can lead to the misdiagnosis of benign masses as malignant, resulting in overtreatment. This study aimed to construct a nomogram model based on the O-RADS US and clinical and laboratory indicators to predict the malignancy risk of adnexal cystic-solid masses.</p><p><strong>Methods: </strong>This retrospective study collected data from patients with adnexal cystic-solid masses who underwent ultrasonography and were pathologically confirmed between January 2021 and December 2023 at the First Affiliated Hospital of Shenzhen University. They were categorized into benign and malignant groups according to pathological findings. Least absolute shrinkage and selection operator (LASSO) regression analysis was used to select the most relevant predictors of ovarian cancer. A nomogram model was constructed, and its diagnostic performance was calculated. We bootstrapped the data 500 times to perform internal verification, drew a calibration curve to verify the prediction ability, and performed a decision curve analysis to assess clinical usefulness.</p><p><strong>Results: </strong>A total of 399 patients with adnexal cystic-solid masses were included in this study: 327 in the benign group and 72 in the malignant group. Five predictors associated with the risk of malignancy of adnexal cystic-solid masses were selected using LASSO regression: O-RADS, acoustic shadowing, postmenopausal status, CA125, and HE4. The area under the curve, sensitivity, specificity, accuracy, positive and negative predictive values of the nomogram were 0.909, 83.3%, 82.9%, 83.0%, 51.7%, and 95.8%, respectively. The calibration curve of the nomogram showed good consistency between the predicted and actual probabilities, and the decision curve showed good clinical usefulness.</p><p><strong>Conclusion: </strong>The nomogram model based on O-RADS US and clinical and laboratory indicators can be used to predict the risk of malignancy in adnexal cystic-solid masses, with high predictive performance, good calibration, and clinical usefulness.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"315"},"PeriodicalIF":2.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, the incidence of nodular thyroid diseases has been increasing annually. Ultrasonography has become a routine diagnostic tool for thyroid nodules due to its high real-time capabilities and low invasiveness. However, thyroid images obtained from current ultrasound tests often have low resolution and are plagued by significant noise interference. Regional differences in medical conditions and varying levels of physician experience can impact the accuracy and efficiency of diagnostic results. With the advancement of deep learning technology, deep learning models are used to identify whether a nodule in a thyroid ultrasound image is benign or malignant. This helps to close the gap between doctors' experience and equipment differences, improving the accuracy of the initial diagnosis of thyroid nodules. To cope with the problem that thyroid ultrasound images contain complex background and noise as well as poorly defined local features. in this paper, we first construct an improved ResNet50 classification model that uses a two-branch input and incorporates a global attention lightening module. This model is used to improve the accuracy of benign and malignant nodule classification in thyroid ultrasound images and to reduce the computational effort due to the two-branch structure.We constructed a U-net segmentation model incorporating our proposed ACR module, which uses hollow convolution with different dilation rates to capture multi-scale contextual information for feature extraction of nodules in thyroid ultrasound images and uses the results of the segmentation task as an auxiliary branch for the classification task to guide the classification model to focus on the lesion region more efficiently in the case of weak local features. The classification model is guided to focus on the lesion region more efficiently, and the classification and segmentation sub-networks are respectively improved specifically for this study, which is used to improve the accuracy of classifying the benign and malignant nature of the nodules in thyroid ultrasound images. The experimental results show that the four evaluation metrics of accuracy, precision, recall, and f1 of the improved model are 96.01%, 93.3%, 98.8%, and 96.0%, respectively. The improvements were 5.7%, 1.6%, 13.1%, and 7.4%, respectively, compared with the baseline classification model.
近年来,甲状腺结节性疾病的发病率逐年上升。超声波检查因其实时性高、创伤小而成为甲状腺结节的常规诊断工具。然而,目前的超声检测所获得的甲状腺图像分辨率往往较低,且存在明显的噪声干扰。医疗条件的地区差异和医生经验水平的不同都会影响诊断结果的准确性和效率。随着深度学习技术的发展,深度学习模型可用于识别甲状腺超声图像中的结节是良性还是恶性。这有助于缩小医生经验与设备差异之间的差距,提高甲状腺结节初步诊断的准确性。针对甲状腺超声图像包含复杂背景和噪声以及局部特征不明确的问题,本文首先构建了一个改进的 ResNet50 分类模型,该模型使用双分支输入,并结合了全局注意力减弱模块。该模型用于提高甲状腺超声图像中良性和恶性结节分类的准确性,并减少双分支结构带来的计算量。我们构建了一个 U 网分割模型,其中包含了我们提出的 ACR 模块,该模块使用不同扩张率的空心卷积来捕捉甲状腺超声图像中结节的多尺度上下文信息,用于特征提取,并将分割任务的结果作为分类任务的辅助分支,在局部特征较弱的情况下引导分类模型更有效地聚焦于病变区域。在引导分类模型更有效地关注病变区域的基础上,分别对分类子网络和分割子网络进行了专门改进,用于提高甲状腺超声图像中结节良恶性分类的准确性。实验结果表明,改进模型的准确率、精确度、召回率和 f1 四个评价指标分别为 96.01%、93.3%、98.8% 和 96.0%。与基线分类模型相比,分别提高了 5.7%、1.6%、13.1% 和 7.4%。
{"title":"The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results.","authors":"Xu Yang, Shuo'ou Qu, Zhilin Wang, Lingxiao Li, Xiaofeng An, Zhibin Cong","doi":"10.1186/s12880-024-01486-z","DOIUrl":"10.1186/s12880-024-01486-z","url":null,"abstract":"<p><p>In recent years, the incidence of nodular thyroid diseases has been increasing annually. Ultrasonography has become a routine diagnostic tool for thyroid nodules due to its high real-time capabilities and low invasiveness. However, thyroid images obtained from current ultrasound tests often have low resolution and are plagued by significant noise interference. Regional differences in medical conditions and varying levels of physician experience can impact the accuracy and efficiency of diagnostic results. With the advancement of deep learning technology, deep learning models are used to identify whether a nodule in a thyroid ultrasound image is benign or malignant. This helps to close the gap between doctors' experience and equipment differences, improving the accuracy of the initial diagnosis of thyroid nodules. To cope with the problem that thyroid ultrasound images contain complex background and noise as well as poorly defined local features. in this paper, we first construct an improved ResNet50 classification model that uses a two-branch input and incorporates a global attention lightening module. This model is used to improve the accuracy of benign and malignant nodule classification in thyroid ultrasound images and to reduce the computational effort due to the two-branch structure.We constructed a U-net segmentation model incorporating our proposed ACR module, which uses hollow convolution with different dilation rates to capture multi-scale contextual information for feature extraction of nodules in thyroid ultrasound images and uses the results of the segmentation task as an auxiliary branch for the classification task to guide the classification model to focus on the lesion region more efficiently in the case of weak local features. The classification model is guided to focus on the lesion region more efficiently, and the classification and segmentation sub-networks are respectively improved specifically for this study, which is used to improve the accuracy of classifying the benign and malignant nature of the nodules in thyroid ultrasound images. The experimental results show that the four evaluation metrics of accuracy, precision, recall, and f1 of the improved model are 96.01%, 93.3%, 98.8%, and 96.0%, respectively. The improvements were 5.7%, 1.6%, 13.1%, and 7.4%, respectively, compared with the baseline classification model.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"314"},"PeriodicalIF":2.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1186/s12880-024-01496-x
Wanying Li, Yiyan Du, Yao Wei, Ruie Feng, Ying Wang, Xiao Yang, Hongyan Wang, Jianchu Li
Background: Thyroid nodules diagnosed in children pose a greater risk of malignancy compared to those in adults. However, there is no ultrasound thyroid nodule evaluation system aimed at children. The objective of this research is to assess the diagnostic performance of the adult-based American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) and Chinese Thyroid Imaging Reporting and Data System (C-TIRADS) in pediatric thyroid carcinoma.
Methods: The preoperative ultrasound images of 177 thyroid lesions in 136 pediatric patients aged 18 or younger who underwent thyroid surgery or fine needle aspiration (FNA) at our center from July 2017 to July 2022 were reviewed. The sonographic characteristics of pediatric thyroid carcinoma were compared and analyzed in contrast to benign nodules. All the nodules were evaluated by the ACR-TIRADS and the C-TIRADS respectively.
Results: Ultrasound features such as solid composition (94.8%), hypoechogenicity or marked hypoechogenicity (94.8-95.7%) and microcalcification (78.3-84.3%) were more common in pediatric malignant nodules (P-values < 0.05). The areas under receiver operating characteristic curves (AUC) of the ACR-TIRADS and the C-TIRADS in diagnosing pediatric thyroid carcinoma were 0.903-0.906, 0.907-0.909 (P-value > 0.05). The interobserver agreement of both the ACR-TIRADS and the C-TIRADS was strong (weighted Kappa > 0.90).
Conclusions: Both the C-TIRADS and the ACR-TIRADS owned great diagnostic performance and strong interobserver agreement in diagnosing pediatric thyroid carcinoma. However, a more complete and specific ultrasound evaluation system for pediatric thyroid nodules is still needed.
{"title":"Diagnostic performance of adult-based thyroid imaging reporting and data systems in pediatric thyroid carcinoma: a retrospective study.","authors":"Wanying Li, Yiyan Du, Yao Wei, Ruie Feng, Ying Wang, Xiao Yang, Hongyan Wang, Jianchu Li","doi":"10.1186/s12880-024-01496-x","DOIUrl":"10.1186/s12880-024-01496-x","url":null,"abstract":"<p><strong>Background: </strong>Thyroid nodules diagnosed in children pose a greater risk of malignancy compared to those in adults. However, there is no ultrasound thyroid nodule evaluation system aimed at children. The objective of this research is to assess the diagnostic performance of the adult-based American College of Radiology Thyroid Imaging Reporting and Data System (ACR-TIRADS) and Chinese Thyroid Imaging Reporting and Data System (C-TIRADS) in pediatric thyroid carcinoma.</p><p><strong>Methods: </strong>The preoperative ultrasound images of 177 thyroid lesions in 136 pediatric patients aged 18 or younger who underwent thyroid surgery or fine needle aspiration (FNA) at our center from July 2017 to July 2022 were reviewed. The sonographic characteristics of pediatric thyroid carcinoma were compared and analyzed in contrast to benign nodules. All the nodules were evaluated by the ACR-TIRADS and the C-TIRADS respectively.</p><p><strong>Results: </strong>Ultrasound features such as solid composition (94.8%), hypoechogenicity or marked hypoechogenicity (94.8-95.7%) and microcalcification (78.3-84.3%) were more common in pediatric malignant nodules (P-values < 0.05). The areas under receiver operating characteristic curves (AUC) of the ACR-TIRADS and the C-TIRADS in diagnosing pediatric thyroid carcinoma were 0.903-0.906, 0.907-0.909 (P-value > 0.05). The interobserver agreement of both the ACR-TIRADS and the C-TIRADS was strong (weighted Kappa > 0.90).</p><p><strong>Conclusions: </strong>Both the C-TIRADS and the ACR-TIRADS owned great diagnostic performance and strong interobserver agreement in diagnosing pediatric thyroid carcinoma. However, a more complete and specific ultrasound evaluation system for pediatric thyroid nodules is still needed.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"311"},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568523/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1186/s12880-024-01492-1
Yi Li, Longxiang Guo, Peng Xie, Yuhui Liu, Yuanlin Li, Ao Liu, Minghuan Li
Purpose: Systemic immunity is essential for driving therapeutically induced antitumor immune responses, and the spleen may reflect alterations in systemic immunity. This study aimed to evaluate the predictive value of contrast-enhanced CT-based spleen radiomics for progression-free survival (PFS) in patients with locally advanced cervical cancer (LACC) who underwent definitive chemoradiotherapy (dCRT). Additionally, we investigated the role of spleen radiomics features and changes in spleen volume in assessing systemic immunity.
Methods: This retrospective study included 257 patients with LACC who underwent dCRT. The patients were randomly divided into training and validation groups in a 7:3 ratio. Radiomic features were extracted from CT images obtained before and after dCRT. Radiomic scores (Radscore) were calculated using features selected through least absolute shrinkage and selection operator (LASSO) Cox regression. The percentage change in spleen volume was determined from measurements taken before and after treatment. Independent prognostic factors for PFS were identified through multivariate Cox regression analyses. Model performance was evaluated with the receiver operating characteristic (ROC) curve and the C-index. The Radscore cut-off value, determined from the ROC curve, was used to stratify patients into high- and low-risk survival groups. The Wilcoxon test was used to analyze differences in hematological parameters between different survival risk groups and between different spleen volume change groups. Spearman correlation analysis was used to explore the relationship between spleen volume change and hematological parameters.
Results: Independent prognostic factors included FIGO stage, pre-treatment neutrophil-to-lymphocyte ratio (pre-NLR), spleen volume change, and Radscore. The radiomics-combined model demonstrated the best predictive performance for PFS in both the training group (AUC: 0.923, C-index: 0.884) and the validation group (AUC: 0.895, C-index: 0.834). Compared to the low-risk group, the high-risk group had higher pre-NLR (p = 0.0054) and post-NLR (p = 0.038). Additionally, compared to the decreased spleen volume group, the increased spleen volume group had lower post-NLR (p = 0.0059) and post-treatment platelet-to-lymphocyte ratio (p < 0.001).
Conclusion: Spleen radiomics combined with clinical features can effectively predict PFS in patients with LACC after dCRT. Furthermore, spleen radiomics features and changes in spleen volume can reflect alterations in systemic immunity.
{"title":"Systemic immune-related spleen radiomics predict progression-free survival in patients with locally advanced cervical cancer underwent definitive chemoradiotherapy.","authors":"Yi Li, Longxiang Guo, Peng Xie, Yuhui Liu, Yuanlin Li, Ao Liu, Minghuan Li","doi":"10.1186/s12880-024-01492-1","DOIUrl":"10.1186/s12880-024-01492-1","url":null,"abstract":"<p><strong>Purpose: </strong>Systemic immunity is essential for driving therapeutically induced antitumor immune responses, and the spleen may reflect alterations in systemic immunity. This study aimed to evaluate the predictive value of contrast-enhanced CT-based spleen radiomics for progression-free survival (PFS) in patients with locally advanced cervical cancer (LACC) who underwent definitive chemoradiotherapy (dCRT). Additionally, we investigated the role of spleen radiomics features and changes in spleen volume in assessing systemic immunity.</p><p><strong>Methods: </strong>This retrospective study included 257 patients with LACC who underwent dCRT. The patients were randomly divided into training and validation groups in a 7:3 ratio. Radiomic features were extracted from CT images obtained before and after dCRT. Radiomic scores (Radscore) were calculated using features selected through least absolute shrinkage and selection operator (LASSO) Cox regression. The percentage change in spleen volume was determined from measurements taken before and after treatment. Independent prognostic factors for PFS were identified through multivariate Cox regression analyses. Model performance was evaluated with the receiver operating characteristic (ROC) curve and the C-index. The Radscore cut-off value, determined from the ROC curve, was used to stratify patients into high- and low-risk survival groups. The Wilcoxon test was used to analyze differences in hematological parameters between different survival risk groups and between different spleen volume change groups. Spearman correlation analysis was used to explore the relationship between spleen volume change and hematological parameters.</p><p><strong>Results: </strong>Independent prognostic factors included FIGO stage, pre-treatment neutrophil-to-lymphocyte ratio (pre-NLR), spleen volume change, and Radscore. The radiomics-combined model demonstrated the best predictive performance for PFS in both the training group (AUC: 0.923, C-index: 0.884) and the validation group (AUC: 0.895, C-index: 0.834). Compared to the low-risk group, the high-risk group had higher pre-NLR (p = 0.0054) and post-NLR (p = 0.038). Additionally, compared to the decreased spleen volume group, the increased spleen volume group had lower post-NLR (p = 0.0059) and post-treatment platelet-to-lymphocyte ratio (p < 0.001).</p><p><strong>Conclusion: </strong>Spleen radiomics combined with clinical features can effectively predict PFS in patients with LACC after dCRT. Furthermore, spleen radiomics features and changes in spleen volume can reflect alterations in systemic immunity.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"310"},"PeriodicalIF":2.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568675/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s12880-024-01487-y
Jianqin Jiang, Yong Xiao, Jia Liu, Lei Cui, Weiwei Shao, Shaowei Hao, Gaofeng Xu, Yigang Fu, Chunhong Hu
Background: T1 mapping can quantify the longitudinal relaxation time of tissues. This study aimed to investigate the repeatability and reproducibility of T1 mapping radiomics features of lung cancer and the feasibility of T1 mapping-based radiomics model to predict its pathological types.
Methods: The chest T1 mapping images and clinical characteristics of 112 lung cancer patients (54 with adenocarcinoma and 58 with other types of lung cancer) were collected retrospectively. 54 patients underwent twice short-term T1 mapping scans. Regions of interest were manually delineated on T1 mapping pseudo-color images to measure the mean native T1 values of lung cancer, and radiomics features were extracted using the semi-automatic segmentation method by two independent observers. The patients were randomly divided into training group (77 cases) and validation group (35 cases) with the ratio of 7:3. Interclass correlation coefficients (ICCs), Student's t-test or Mann-Whitney U tests and least absolute shrinkage and selection operator (LASSO) were used for feature selection. The optimum features were selected to establish a logistic regression (LR) radiomics model. Independent sample t-test, Mann Whitney U-test or chi square test were used to compare the differences of clinical characteristics and T1 values. Performance was compared by the area under the receiver operating characteristic (ROC) curve (AUC).
Results: In the training group, smoking history, lesion type and native T1 values were different between adenocarcinoma and non-adenocarcinoma patients (P = 0.004-0.038). There were 1035 (54.30%) radiomics features meet the intra-and inter-observer, and test-retest reproducibility with ICC > 0.80. After feature dimensionality reduction and model construction, the AUC of T1 mapping-based radiomics model for predicting the pathological types of lung cancer was 0.833 and 0.843, respectively, in the training and validation cohorts. The AUCs of T1 value and clinical model (including smoking history and lesion type) were 0.657 and 0.692 in the training group, and 0.722 and 0.686 in the validation group. Combined with T1 mapping radiomics, clinical model and T1 value to establish a combined model, the prediction efficiency was further improved to 0.895 and 0.915 in the training and validation groups.
Conclusions: About 50% of the T1 mapping-based radiomics features displayed relatively poor repeatability and reproducibility. While T1 mapping-based radiomics model is valuable in identification of histological types of lung cancer despite the measurement variability. Combination of T1 mapping radiomics model, clinical characteristics and native T1 value can improve the predictive value of pathological types of lung cancer.
{"title":"T1 mapping-based radiomics in the identification of histological types of lung cancer: a reproducibility and feasibility study.","authors":"Jianqin Jiang, Yong Xiao, Jia Liu, Lei Cui, Weiwei Shao, Shaowei Hao, Gaofeng Xu, Yigang Fu, Chunhong Hu","doi":"10.1186/s12880-024-01487-y","DOIUrl":"10.1186/s12880-024-01487-y","url":null,"abstract":"<p><strong>Background: </strong>T1 mapping can quantify the longitudinal relaxation time of tissues. This study aimed to investigate the repeatability and reproducibility of T1 mapping radiomics features of lung cancer and the feasibility of T1 mapping-based radiomics model to predict its pathological types.</p><p><strong>Methods: </strong>The chest T1 mapping images and clinical characteristics of 112 lung cancer patients (54 with adenocarcinoma and 58 with other types of lung cancer) were collected retrospectively. 54 patients underwent twice short-term T1 mapping scans. Regions of interest were manually delineated on T1 mapping pseudo-color images to measure the mean native T1 values of lung cancer, and radiomics features were extracted using the semi-automatic segmentation method by two independent observers. The patients were randomly divided into training group (77 cases) and validation group (35 cases) with the ratio of 7:3. Interclass correlation coefficients (ICCs), Student's t-test or Mann-Whitney U tests and least absolute shrinkage and selection operator (LASSO) were used for feature selection. The optimum features were selected to establish a logistic regression (LR) radiomics model. Independent sample t-test, Mann Whitney U-test or chi square test were used to compare the differences of clinical characteristics and T1 values. Performance was compared by the area under the receiver operating characteristic (ROC) curve (AUC).</p><p><strong>Results: </strong>In the training group, smoking history, lesion type and native T1 values were different between adenocarcinoma and non-adenocarcinoma patients (P = 0.004-0.038). There were 1035 (54.30%) radiomics features meet the intra-and inter-observer, and test-retest reproducibility with ICC > 0.80. After feature dimensionality reduction and model construction, the AUC of T1 mapping-based radiomics model for predicting the pathological types of lung cancer was 0.833 and 0.843, respectively, in the training and validation cohorts. The AUCs of T1 value and clinical model (including smoking history and lesion type) were 0.657 and 0.692 in the training group, and 0.722 and 0.686 in the validation group. Combined with T1 mapping radiomics, clinical model and T1 value to establish a combined model, the prediction efficiency was further improved to 0.895 and 0.915 in the training and validation groups.</p><p><strong>Conclusions: </strong>About 50% of the T1 mapping-based radiomics features displayed relatively poor repeatability and reproducibility. While T1 mapping-based radiomics model is valuable in identification of histological types of lung cancer despite the measurement variability. Combination of T1 mapping radiomics model, clinical characteristics and native T1 value can improve the predictive value of pathological types of lung cancer.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"308"},"PeriodicalIF":2.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566602/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1186/s12880-024-01493-0
Tianxin Cheng, Feifei Li, Xuetao Jiang, Dan Yu, Jie Wei, Ying Yuan, Hui Xu
Background: 3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-assisted compressed sensing (ACS) in improving the acceleration efficiency and maintaining or enhancing the image quality of brachial plexus MR imaging.
Methods: A total of 30 volunteers underwent 3D sampling perfection with application-optimized contrast using different flip angle evolution short time inversion recovery using a 3.0T MR scanner. The imaging protocol included parallel imaging (PI) and ACS employing acceleration factors of 4.37, 6.22, and 9.03. Radiologists evaluated the neural detail display, fat suppression effectiveness, presence of image artifacts, and overall image quality. Signal intensity and standard deviation of specific anatomical sites within the brachial plexus and background tissues were measured, with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) subsequently calculated. Cohen's weighted kappa (κ), One-way ANOVA, Kruskal-Wallis and pairwise comparisons with Bonferroni-adjusted significance level. P < 0.05 was considered statistically significant.
Results: ACS significantly reduced scanning times compared to PI. Evaluations revealed differences in subjective scores and SNR across the sequences (P < 0.05), with no marked differences in CNR (P > 0.05). For subjective scores, ACS 9.03 were lower than the other three sequences in neural details display, image artifacts and overall image quality. There was no significant difference in fat suppression. For objective quantitative evaluation, SNR of right C6 root in ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of left C6 root in ACS 4.37, ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of medial cord in ACS 6.22, ACS 9.03 was higher than that in PI.
Conclusion: Compared with PI, ACS can shorten scanning time while ensuring good image quality.
{"title":"Comparison of different acceleration factors of artificial intelligence-compressed sensing for brachial plexus MRI imaging: scanning time and image quality.","authors":"Tianxin Cheng, Feifei Li, Xuetao Jiang, Dan Yu, Jie Wei, Ying Yuan, Hui Xu","doi":"10.1186/s12880-024-01493-0","DOIUrl":"10.1186/s12880-024-01493-0","url":null,"abstract":"<p><strong>Background: </strong>3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-assisted compressed sensing (ACS) in improving the acceleration efficiency and maintaining or enhancing the image quality of brachial plexus MR imaging.</p><p><strong>Methods: </strong>A total of 30 volunteers underwent 3D sampling perfection with application-optimized contrast using different flip angle evolution short time inversion recovery using a 3.0T MR scanner. The imaging protocol included parallel imaging (PI) and ACS employing acceleration factors of 4.37, 6.22, and 9.03. Radiologists evaluated the neural detail display, fat suppression effectiveness, presence of image artifacts, and overall image quality. Signal intensity and standard deviation of specific anatomical sites within the brachial plexus and background tissues were measured, with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) subsequently calculated. Cohen's weighted kappa (κ), One-way ANOVA, Kruskal-Wallis and pairwise comparisons with Bonferroni-adjusted significance level. P < 0.05 was considered statistically significant.</p><p><strong>Results: </strong>ACS significantly reduced scanning times compared to PI. Evaluations revealed differences in subjective scores and SNR across the sequences (P < 0.05), with no marked differences in CNR (P > 0.05). For subjective scores, ACS 9.03 were lower than the other three sequences in neural details display, image artifacts and overall image quality. There was no significant difference in fat suppression. For objective quantitative evaluation, SNR of right C6 root in ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of left C6 root in ACS 4.37, ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of medial cord in ACS 6.22, ACS 9.03 was higher than that in PI.</p><p><strong>Conclusion: </strong>Compared with PI, ACS can shorten scanning time while ensuring good image quality.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"309"},"PeriodicalIF":2.9,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1186/s12880-024-01479-y
A M J Md Zubair Rahman, R Mythili, K Chokkanathan, T R Mahesh, K Vanitha, Temesgen Engida Yimer
The early detection and diagnosis of gastrointestinal tract diseases, such as ulcerative colitis, polyps, and esophagitis, are crucial for timely treatment. Traditional imaging techniques often rely on manual interpretation, which is subject to variability and may lack precision. Current methodologies leverage conventional deep learning models that, while effective to an extent, often suffer from overfitting and generalization issues on medical image datasets due to the intricate and subtle variations in disease manifestations. These models typically do not fully utilize the potential of transfer learning or advanced data augmentation, leading to less-than-optimal performance, especially in diverse real-world scenarios where data variability is high. This study introduces a robust model using the EfficientNetB5 architecture combined with a sophisticated data augmentation strategy. The model is tailored for the high variability and intricate details present in gastrointestinal tract disease images. By integrating transfer learning with maximal pooling and extensive regularization, the model aims to enhance diagnostic accuracy and reduce overfitting. The proposed model achieved a test accuracy of 98.89%, surpassing traditional methods by incorporating advanced regularization and augmentation techniques. The application of horizontal flipping and dynamic scaling during training significantly improved the model's ability to generalize, evidenced by a low-test loss of 0.230 and high precision metrics across all classes. The proposed deep learning framework demonstrates superior performance in the automated classification of gastrointestinal diseases from image data. By addressing key limitations of existing models through innovative techniques, this study contributes to the enhancement of diagnostic processes in medical imaging, potentially leading to more accurate and timely disease interventions.
{"title":"Enhancing image-based diagnosis of gastrointestinal tract diseases through deep learning with EfficientNet and advanced data augmentation techniques.","authors":"A M J Md Zubair Rahman, R Mythili, K Chokkanathan, T R Mahesh, K Vanitha, Temesgen Engida Yimer","doi":"10.1186/s12880-024-01479-y","DOIUrl":"10.1186/s12880-024-01479-y","url":null,"abstract":"<p><p>The early detection and diagnosis of gastrointestinal tract diseases, such as ulcerative colitis, polyps, and esophagitis, are crucial for timely treatment. Traditional imaging techniques often rely on manual interpretation, which is subject to variability and may lack precision. Current methodologies leverage conventional deep learning models that, while effective to an extent, often suffer from overfitting and generalization issues on medical image datasets due to the intricate and subtle variations in disease manifestations. These models typically do not fully utilize the potential of transfer learning or advanced data augmentation, leading to less-than-optimal performance, especially in diverse real-world scenarios where data variability is high. This study introduces a robust model using the EfficientNetB5 architecture combined with a sophisticated data augmentation strategy. The model is tailored for the high variability and intricate details present in gastrointestinal tract disease images. By integrating transfer learning with maximal pooling and extensive regularization, the model aims to enhance diagnostic accuracy and reduce overfitting. The proposed model achieved a test accuracy of 98.89%, surpassing traditional methods by incorporating advanced regularization and augmentation techniques. The application of horizontal flipping and dynamic scaling during training significantly improved the model's ability to generalize, evidenced by a low-test loss of 0.230 and high precision metrics across all classes. The proposed deep learning framework demonstrates superior performance in the automated classification of gastrointestinal diseases from image data. By addressing key limitations of existing models through innovative techniques, this study contributes to the enhancement of diagnostic processes in medical imaging, potentially leading to more accurate and timely disease interventions.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"306"},"PeriodicalIF":2.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555998/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1186/s12880-024-01470-7
Magnus Rogstadkjernet, Sigurd Z Zha, Lars G Klæboe, Camilla K Larsen, John M Aalen, Esther Scheirlynck, Bjørn-Jostein Singstad, Steven Droogmans, Bernard Cosyns, Otto A Smiseth, Kristina H Haugaa, Thor Edvardsen, Eigil Samset, Pål H Brekke
Background: Speckle tracking echocardiography (STE) provides quantification of left ventricular (LV) deformation and is useful in the assessment of LV function. STE is increasingly being used clinically, and every effort to simplify and standardize STE is important. Manual outlining of regions of interest (ROIs) is labor intensive and may influence assessment of strain values.
Purpose: We hypothesized that a deep learning (DL) model, trained on clinical echocardiographic exams, can be combined with a readily available echocardiographic analysis software, to automate strain calculation with comparable fidelity to trained cardiologists.
Methods: Data consisted of still frame echocardiographic images with cardiologist-defined ROIs from 672 clinical echocardiographic exams from a university hospital outpatient clinic. Exams included patients with ischemic heart disease, heart failure, valvular disease, and conduction abnormalities, and some healthy subjects. An EfficientNetB1-based architecture was employed, and different techniques and properties including data set size, data quality, augmentations, and transfer learning were evaluated. DL predicted ROIs were reintroduced into commercially available echocardiographic analysis software to automatically calculate strain values.
Results: DL-automated strain calculations had an average absolute difference of 0.75 (95% CI 0.58-0.92) for global longitudinal strain (GLS), and 1.16 (95% CI 1.03-1.29) for single-projection longitudinal strain (LS), compared to operators. A Bland-Altman plot revealed no obvious bias, though there were fewer outliers in the lower average LS ranges. Techniques and data properties yielded no significant increase/decrease in performance.
Conclusion: The study demonstrates that DL-assisted, automated strain measurements are feasible, and provide results within interobserver variation. Employing DL in echocardiographic analyses could further facilitate adoption of STE parameters in clinical practice and research, and improve reproducibility.
背景:斑点追踪超声心动图(STE)可量化左心室(LV)变形,对评估左心室功能非常有用。STE在临床上的应用越来越广泛,因此简化和标准化STE非常重要。人工勾画感兴趣区(ROI)是一项劳动密集型工作,可能会影响应变值的评估。目的:我们假设,通过临床超声心动图检查训练的深度学习(DL)模型可以与现成的超声心动图分析软件相结合,自动进行应变计算,其保真度可媲美经过培训的心脏病专家:数据包括静帧超声心动图图像和心脏病专家定义的 ROI,这些图像来自一所大学医院门诊部的 672 次临床超声心动图检查。检查对象包括缺血性心脏病、心力衰竭、瓣膜病和传导异常患者,以及一些健康受试者。我们采用了基于 EfficientNetB1 的架构,并评估了不同的技术和特性,包括数据集大小、数据质量、增强和迁移学习。DL预测的ROI被重新引入到市售的超声心动图分析软件中,以自动计算应变值:与操作者相比,DL 自动应变计算的总体纵向应变(GLS)和单投影纵向应变(LS)的平均绝对差值分别为 0.75(95% CI 0.58-0.92)和 1.16(95% CI 1.03-1.29)。布兰德-阿尔特曼图显示没有明显的偏差,尽管在较低的平均 LS 范围内有较少的异常值。技术和数据属性没有导致性能的显著提高/降低:该研究表明,DL 辅助自动应变测量是可行的,其结果在观察者间差异范围内。在超声心动图分析中采用 DL 可进一步促进 STE 参数在临床实践和研究中的应用,并提高可重复性。
{"title":"A deep learning based method for left ventricular strain measurements: repeatability and accuracy compared to experienced echocardiographers.","authors":"Magnus Rogstadkjernet, Sigurd Z Zha, Lars G Klæboe, Camilla K Larsen, John M Aalen, Esther Scheirlynck, Bjørn-Jostein Singstad, Steven Droogmans, Bernard Cosyns, Otto A Smiseth, Kristina H Haugaa, Thor Edvardsen, Eigil Samset, Pål H Brekke","doi":"10.1186/s12880-024-01470-7","DOIUrl":"10.1186/s12880-024-01470-7","url":null,"abstract":"<p><strong>Background: </strong>Speckle tracking echocardiography (STE) provides quantification of left ventricular (LV) deformation and is useful in the assessment of LV function. STE is increasingly being used clinically, and every effort to simplify and standardize STE is important. Manual outlining of regions of interest (ROIs) is labor intensive and may influence assessment of strain values.</p><p><strong>Purpose: </strong>We hypothesized that a deep learning (DL) model, trained on clinical echocardiographic exams, can be combined with a readily available echocardiographic analysis software, to automate strain calculation with comparable fidelity to trained cardiologists.</p><p><strong>Methods: </strong>Data consisted of still frame echocardiographic images with cardiologist-defined ROIs from 672 clinical echocardiographic exams from a university hospital outpatient clinic. Exams included patients with ischemic heart disease, heart failure, valvular disease, and conduction abnormalities, and some healthy subjects. An EfficientNetB1-based architecture was employed, and different techniques and properties including data set size, data quality, augmentations, and transfer learning were evaluated. DL predicted ROIs were reintroduced into commercially available echocardiographic analysis software to automatically calculate strain values.</p><p><strong>Results: </strong>DL-automated strain calculations had an average absolute difference of 0.75 (95% CI 0.58-0.92) for global longitudinal strain (GLS), and 1.16 (95% CI 1.03-1.29) for single-projection longitudinal strain (LS), compared to operators. A Bland-Altman plot revealed no obvious bias, though there were fewer outliers in the lower average LS ranges. Techniques and data properties yielded no significant increase/decrease in performance.</p><p><strong>Conclusion: </strong>The study demonstrates that DL-assisted, automated strain measurements are feasible, and provide results within interobserver variation. Employing DL in echocardiographic analyses could further facilitate adoption of STE parameters in clinical practice and research, and improve reproducibility.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"305"},"PeriodicalIF":2.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}