首页 > 最新文献

BMC Medical Imaging最新文献

英文 中文
DefaceQA - automated quality assessment of brain MRI defacing software. DefaceQA -脑MRI损毁的自动质量评估软件。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-07 DOI: 10.1186/s12880-026-02207-4
Maryam Khodaei Dolouei, Sina Sadeghi, Toralf Kirsten
{"title":"DefaceQA - automated quality assessment of brain MRI defacing software.","authors":"Maryam Khodaei Dolouei, Sina Sadeghi, Toralf Kirsten","doi":"10.1186/s12880-026-02207-4","DOIUrl":"https://doi.org/10.1186/s12880-026-02207-4","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiography-based AI decision support for further post-traumatic knee MRI referral in children. 基于放射学的人工智能对儿童创伤后膝关节MRI转诊的决策支持。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-07 DOI: 10.1186/s12880-026-02185-7
Nikolaus Stranger, Mario Scherkl, Andreea Ciornei-Hoffman, Christina Flucher, Georg Singer, Franko Hrzic, Georg Mattiassich, Dieter Szolar, Manfred Tillich, Sebastian Tschauner
{"title":"Radiography-based AI decision support for further post-traumatic knee MRI referral in children.","authors":"Nikolaus Stranger, Mario Scherkl, Andreea Ciornei-Hoffman, Christina Flucher, Georg Singer, Franko Hrzic, Georg Mattiassich, Dieter Szolar, Manfred Tillich, Sebastian Tschauner","doi":"10.1186/s12880-026-02185-7","DOIUrl":"https://doi.org/10.1186/s12880-026-02185-7","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commercial AI platforms improve reproducibility but fail to meet clinical precision thresholds for intracranial aneurysm measurement: implications for serial surveillance. 商业人工智能平台提高了再现性,但未能达到颅内动脉瘤测量的临床精度阈值:对连续监测的影响。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-07 DOI: 10.1186/s12880-026-02209-2
Can Yin, Linan Hu, Shengwu Duan, Xiqing Deng

Background: Intracranial aneurysm affect 3-7% of the global population, with rupture causing > 80% of non-traumatic subarachnoid hemorrhage and approximately 50% mortality. Clinical management relies on precise measurement of aneurysm neck width and maximum length, where ≥ 1 mm growth signals elevated rupture risk. computed tomography angiography enables non-invasive monitoring but manual measurements suffer from inter-observer variability. Commercial artificial intelligence platforms offer potential improvements, yet their consistency and accuracy versus digital subtraction angiography, the gold standard, are understudied.

Methods: This retrospective study analyzed 148 patients with 163 Intracranial aneurysms via computed tomography angiography, including a subgroup of 86 with digital subtraction angiography within 1 week. Measurements were obtained using Shukun artificial intelligence, UIH artificial intelligence, manual computed tomography angiography (intra-observer repeated at 1 month), and digital subtraction angiography. Reproducibility was assessed by coefficient of variation; agreement by Bland-Altman analysis, with 95% limits of agreement within ± 1.0 mm considered clinically acceptable.

Results: Results For aneurysm neck width, manual measurements had a mean difference of -1.62 mm and 95% limits of agreement of -4.87 to 1.62 mm vs. digital subtraction angiography, while UIH artificial intelligence and Shukun artificial intelligence had mean differences of + 0.80 mm and - 1.01 mm, and 95% limits of agreement of -3.68 to 2.08 mm and - 3.06 to 1.04 mm, respectively. For aneurysm maximum length, UIH artificial intelligence systematically overestimated (mean difference: +3.46 mm) and Shukun artificial intelligence underestimated (mean difference: -2.20 mm) vs. digital subtraction angiography. Both artificial intelligence platforms had narrower coefficients of variation (0.31-0.36 for aneurysm neck width, 0.23-0.26 for aneurysm maximum length) than manual measurements (0.36-0.42, 0.23-0.24). However, all methods exceeded the clinically acceptable ± 1.0 mm threshold.

Conclusions: Artificial intelligence platforms have better reproducibility than manual measurements but show systematic biases, not meeting the clinical ± 1.0 mm precision vs. the digital subtraction angiography gold standard. Inter-platform variability exceeds the aneurysm growth threshold, requiring consistent use of the same artificial intelligence platform in serial surveillance to prevent misinterpreting changes.

背景:颅内动脉瘤影响全球人口的3-7%,其破裂导致bbb80 %的非外伤性蛛网膜下腔出血,约50%的死亡率。临床治疗依赖于精确测量动脉瘤颈部宽度和最大长度,≥1mm的生长表明破裂风险增加。计算机断层血管造影可以实现非侵入性监测,但人工测量受到观察者之间的可变性的影响。商业人工智能平台提供了潜在的改进,但与黄金标准数字减影血管造影相比,它们的一致性和准确性尚未得到充分研究。方法:回顾性分析148例163例颅内动脉瘤行ct血管造影,其中86例为1周内行数字减影血管造影。使用Shukun人工智能、UIH人工智能、人工计算机断层血管造影(1个月重复观察)和数字减影血管造影获得测量结果。用变异系数评价重现性;Bland-Altman分析的一致性,95%的一致性在±1.0 mm以内被认为是临床可接受的。结果:对于动脉瘤颈宽,人工测量与数字减影血管造影相比,平均差值为-1.62 mm, 95%吻合范围为-4.87 ~ 1.62 mm,而UIH人工智能和Shukun人工智能的平均差值分别为+ 0.80 mm和- 1.01 mm, 95%吻合范围分别为-3.68 ~ 2.08 mm和- 3.06 ~ 1.04 mm。对于动脉瘤最大长度,与数字减影血管造影相比,UIH人工智能系统高估(平均差值:+3.46 mm), Shukun人工智能系统低估(平均差值:-2.20 mm)。两种人工智能平台的变异系数(动脉瘤颈宽0.31-0.36,动脉瘤最大长度0.23-0.26)均小于人工测量(0.36-0.42,0.23-0.24)。然而,所有方法均超过临床可接受的±1.0 mm阈值。结论:人工智能平台比人工测量具有更好的再现性,但存在系统偏差,与数字减影血管造影金标准相比,不符合临床±1.0 mm的精度。平台间的可变性超过了动脉瘤生长的阈值,需要在连续监测中一致使用相同的人工智能平台,以防止误解变化。
{"title":"Commercial AI platforms improve reproducibility but fail to meet clinical precision thresholds for intracranial aneurysm measurement: implications for serial surveillance.","authors":"Can Yin, Linan Hu, Shengwu Duan, Xiqing Deng","doi":"10.1186/s12880-026-02209-2","DOIUrl":"https://doi.org/10.1186/s12880-026-02209-2","url":null,"abstract":"<p><strong>Background: </strong>Intracranial aneurysm affect 3-7% of the global population, with rupture causing > 80% of non-traumatic subarachnoid hemorrhage and approximately 50% mortality. Clinical management relies on precise measurement of aneurysm neck width and maximum length, where ≥ 1 mm growth signals elevated rupture risk. computed tomography angiography enables non-invasive monitoring but manual measurements suffer from inter-observer variability. Commercial artificial intelligence platforms offer potential improvements, yet their consistency and accuracy versus digital subtraction angiography, the gold standard, are understudied.</p><p><strong>Methods: </strong>This retrospective study analyzed 148 patients with 163 Intracranial aneurysms via computed tomography angiography, including a subgroup of 86 with digital subtraction angiography within 1 week. Measurements were obtained using Shukun artificial intelligence, UIH artificial intelligence, manual computed tomography angiography (intra-observer repeated at 1 month), and digital subtraction angiography. Reproducibility was assessed by coefficient of variation; agreement by Bland-Altman analysis, with 95% limits of agreement within ± 1.0 mm considered clinically acceptable.</p><p><strong>Results: </strong>Results For aneurysm neck width, manual measurements had a mean difference of -1.62 mm and 95% limits of agreement of -4.87 to 1.62 mm vs. digital subtraction angiography, while UIH artificial intelligence and Shukun artificial intelligence had mean differences of + 0.80 mm and - 1.01 mm, and 95% limits of agreement of -3.68 to 2.08 mm and - 3.06 to 1.04 mm, respectively. For aneurysm maximum length, UIH artificial intelligence systematically overestimated (mean difference: +3.46 mm) and Shukun artificial intelligence underestimated (mean difference: -2.20 mm) vs. digital subtraction angiography. Both artificial intelligence platforms had narrower coefficients of variation (0.31-0.36 for aneurysm neck width, 0.23-0.26 for aneurysm maximum length) than manual measurements (0.36-0.42, 0.23-0.24). However, all methods exceeded the clinically acceptable ± 1.0 mm threshold.</p><p><strong>Conclusions: </strong>Artificial intelligence platforms have better reproducibility than manual measurements but show systematic biases, not meeting the clinical ± 1.0 mm precision vs. the digital subtraction angiography gold standard. Inter-platform variability exceeds the aneurysm growth threshold, requiring consistent use of the same artificial intelligence platform in serial surveillance to prevent misinterpreting changes.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146137254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ICG combined with medical adhesive in preoperative localization of complex pulmonary nodules: a retrospective study. ICG联合医用粘胶在复杂肺结节术前定位中的回顾性研究。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-06 DOI: 10.1186/s12880-026-02183-9
Wenhao Wang, Yulong Tan, Dong Xu, Haoxin Liu, Yifeng Qian, Huijun Zhang, Meng Shi, Xiaofeng Chen
{"title":"ICG combined with medical adhesive in preoperative localization of complex pulmonary nodules: a retrospective study.","authors":"Wenhao Wang, Yulong Tan, Dong Xu, Haoxin Liu, Yifeng Qian, Huijun Zhang, Meng Shi, Xiaofeng Chen","doi":"10.1186/s12880-026-02183-9","DOIUrl":"https://doi.org/10.1186/s12880-026-02183-9","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study protocol for neuroimaging using 7 T MRI in the investigation of baricitinib for reduction of HIV in the CNS: a randomized placebo-controlled trial. 使用7t MRI研究巴西替尼减少中枢神经系统HIV的神经影像学研究方案:一项随机安慰剂对照试验。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-06 DOI: 10.1186/s12880-026-02202-9
Candace C Fleischer, Kaundinya Gopinath, Eva Martinez Luque, Lei Zhou, Howard L Pope, Ryan B Peterson, Alicarmen Alvarez, Julianna L McNeice, Minh L Nguyen, Taylor B Harrison, David W Loring, Kirk A Easley, Christina Gavegnano, Vincent C Marconi, Albert M L Anderson, William Tyor
{"title":"Study protocol for neuroimaging using 7 T MRI in the investigation of baricitinib for reduction of HIV in the CNS: a randomized placebo-controlled trial.","authors":"Candace C Fleischer, Kaundinya Gopinath, Eva Martinez Luque, Lei Zhou, Howard L Pope, Ryan B Peterson, Alicarmen Alvarez, Julianna L McNeice, Minh L Nguyen, Taylor B Harrison, David W Loring, Kirk A Easley, Christina Gavegnano, Vincent C Marconi, Albert M L Anderson, William Tyor","doi":"10.1186/s12880-026-02202-9","DOIUrl":"https://doi.org/10.1186/s12880-026-02202-9","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UMUD: a web application for easy access to musculoskeletal ultrasonography datasets. UMUD:一个易于访问肌肉骨骼超声数据集的web应用程序。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-06 DOI: 10.1186/s12880-026-02170-0
Paul Ritsche, Fabio Sarto, Francesco Santini, Christoph Leitner, Martino V Franchi, Oliver Faude, Taija Finni, Olivier Seynnes, Neil Cronin
{"title":"UMUD: a web application for easy access to musculoskeletal ultrasonography datasets.","authors":"Paul Ritsche, Fabio Sarto, Francesco Santini, Christoph Leitner, Martino V Franchi, Oliver Faude, Taija Finni, Olivier Seynnes, Neil Cronin","doi":"10.1186/s12880-026-02170-0","DOIUrl":"https://doi.org/10.1186/s12880-026-02170-0","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146130979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusion of deep learning and radiomics with dynamic spatiotemporal modeling for non-small cell lung cancer recurrence risk assessment after microwave ablation. 微波消融后非小细胞肺癌复发风险评估的深度学习与放射组学动态时空模型融合
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-05 DOI: 10.1186/s12880-026-02179-5
Meng Li, Yongzhao Li, Xiangming Wang, Hui Feng, Yang Li, Ying Zhang, Gaofeng Shi
{"title":"Fusion of deep learning and radiomics with dynamic spatiotemporal modeling for non-small cell lung cancer recurrence risk assessment after microwave ablation.","authors":"Meng Li, Yongzhao Li, Xiangming Wang, Hui Feng, Yang Li, Ying Zhang, Gaofeng Shi","doi":"10.1186/s12880-026-02179-5","DOIUrl":"https://doi.org/10.1186/s12880-026-02179-5","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146123651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of an AI model for pediatric myelin maturation age assessment and benefits for junior radiologists. 用于儿科髓磷脂成熟年龄评估的AI模型的验证及其对初级放射科医生的益处。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-04 DOI: 10.1186/s12880-026-02198-2
Qiaoqiao Zou, Kexin Wang, Yaofeng Zhang, Zuqiang Xi, Zijian Cai, Xincheng Li, Xiaoying Wang
{"title":"Validation of an AI model for pediatric myelin maturation age assessment and benefits for junior radiologists.","authors":"Qiaoqiao Zou, Kexin Wang, Yaofeng Zhang, Zuqiang Xi, Zijian Cai, Xincheng Li, Xiaoying Wang","doi":"10.1186/s12880-026-02198-2","DOIUrl":"https://doi.org/10.1186/s12880-026-02198-2","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diffusion kurtosis imaging for detecting renal functional changes in glomerulonephritis: a longitudinal experimental study. 弥散峰度成像检测肾小球肾炎肾功能改变的纵向实验研究。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-04 DOI: 10.1186/s12880-026-02197-3
Jian Liu, Yu Wu, Daoyu Yang, Xunlan Zhang, Rongpin Wang, Xianchun Zeng
{"title":"Diffusion kurtosis imaging for detecting renal functional changes in glomerulonephritis: a longitudinal experimental study.","authors":"Jian Liu, Yu Wu, Daoyu Yang, Xunlan Zhang, Rongpin Wang, Xianchun Zeng","doi":"10.1186/s12880-026-02197-3","DOIUrl":"https://doi.org/10.1186/s12880-026-02197-3","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noninvasive preoperative prediction of perineural invasion in intrahepatic cholangiocarcinoma based on dynamic contrast-enhanced MRI. 基于动态增强MRI的无创术前预测肝内胆管癌神经周围浸润。
IF 3.2 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Pub Date : 2026-02-04 DOI: 10.1186/s12880-026-02188-4
Sisi Zhang, Yayuan Feng, Da He, Yuxian Wu, Ningyang Jia, Xingpeng Pan, Yiping Liu
{"title":"Noninvasive preoperative prediction of perineural invasion in intrahepatic cholangiocarcinoma based on dynamic contrast-enhanced MRI.","authors":"Sisi Zhang, Yayuan Feng, Da He, Yuxian Wu, Ningyang Jia, Xingpeng Pan, Yiping Liu","doi":"10.1186/s12880-026-02188-4","DOIUrl":"https://doi.org/10.1186/s12880-026-02188-4","url":null,"abstract":"","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146117806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
BMC Medical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1