The case for sporadic cyanogenic glycoside evolution in plants

IF 8.3 2区 生物学 Q1 PLANT SCIENCES Current opinion in plant biology Pub Date : 2024-07-31 DOI:10.1016/j.pbi.2024.102608
Raquel Sánchez-Pérez , Elizabeth HJ. Neilson
{"title":"The case for sporadic cyanogenic glycoside evolution in plants","authors":"Raquel Sánchez-Pérez ,&nbsp;Elizabeth HJ. Neilson","doi":"10.1016/j.pbi.2024.102608","DOIUrl":null,"url":null,"abstract":"<div><p>Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"81 ","pages":"Article 102608"},"PeriodicalIF":8.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000992/pdfft?md5=0153d55aa0f4137434ab5832b902ab9b&pid=1-s2.0-S1369526624000992-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000992","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanogenic glycosides are α-hydroxynitrile glucosides present in approximately 3000 different plant species. Upon tissue disruption, cyanogenic glycosides are hydrolyzed to release toxic hydrogen cyanide as a means of chemical defense. Over 100 different cyanogenic glycosides have been reported, with structural diversity dependent on the precursor amino acid, and subsequent modifications. Cyanogenic glycosides represent a prime example of sporadic metabolite evolution, with the metabolic trait arising multiple times throughout the plant lineage as evidenced by recruitment of different enzyme families for biosynthesis. Here, we review the latest developments within cyanogenic glycoside biosynthesis, and argue possible factors driving sporadic evolution including shared intermediates and crossovers with other metabolic pathways crossovers, and metabolite multifunctionality beyond chemical defense.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物中零星氰苷进化的案例。
生氰苷是存在于大约 3000 种不同植物中的α-羟腈葡糖苷。组织受到破坏时,氰苷会水解释放出有毒的氰化氢,作为一种化学防御手段。已报道的氰苷有 100 多种,其结构多样性取决于前体氨基酸和随后的修饰。生氰苷是零星代谢物进化的一个典型例子,其代谢特征在整个植物品系中多次出现,这可以通过招募不同的酶家族进行生物合成得到证明。在此,我们回顾了氰苷类生物合成的最新进展,并论证了驱动零星进化的可能因素,包括与其他代谢途径交叉的共享中间体和交叉,以及代谢物在化学防御之外的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Plant growth and development: Experimental diversity is essential for dissecting plant diversity. Detecting novel plant pathogen threats to food system security by integrating the Plant Reactome and remote sensing. Messenger and message: Uncovering the roles, rhythm and regulation of extracellular vesicles in plant biotic interactions. Chromatin dynamics and epigenetic regulation in plant development and environmental responses. Editorial overview: Spatial and temporal regulation of molecular and cell biological process across biological scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1