A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions

Reza Pakdaman Zangabad;Hohyun Lee;Xitie Zhang;M. Sait Kilinc;Costas D. Arvanitis;F. Levent Degertekin
{"title":"A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions","authors":"Reza Pakdaman Zangabad;Hohyun Lee;Xitie Zhang;M. Sait Kilinc;Costas D. Arvanitis;F. Levent Degertekin","doi":"10.1109/TUFFC.2024.3436918","DOIUrl":null,"url":null,"abstract":"Tracking and controlling microbubble (MB) dynamics in the human brain through acoustic emission (AE) monitoring during transcranial focused ultrasound (tFUS) therapy are critical for attaining safe and effective treatments. The low-amplitude MB emissions have harmonic and ultra-harmonic components, necessitating a broad bandwidth and low-noise system for monitoring transcranial MB activity. Capacitive micromachined ultrasonic transducers (CMUTs) offer high sensitivity and low noise over a broad bandwidth, especially when they are tightly integrated with electronics, making them a good candidate technology for monitoring the MB activity through human skull. In this study, we designed a 16-channel analog front-end (AFE) electronics with a low-noise transimpedance amplifier (TIA), a band-gap reference circuit, and an output buffer stage. To assess AFE performance and ability to detect MB AE, we combined it with a commercial CMUT array. The integrated system has \n<inline-formula> <tex-math>${12}.{3}$ </tex-math></inline-formula>\n–\n<inline-formula> <tex-math>${61}.{25} ~\\text {mV}/\\text {Pa}$ </tex-math></inline-formula>\n receive sensitivity with \n<inline-formula> <tex-math>${0}.{085}$ </tex-math></inline-formula>\n–\n<inline-formula> <tex-math>${0}.{23}~\\text {mPa}/\\text {(}\\text {Hz}\\text {)}^{1/2}$ </tex-math></inline-formula>\n minimum detectable pressure (MDP) up to 3 MHz for a single element CMUT with 3.78 \n<inline-formula> <tex-math>$\\text {mm}^{{2}}$ </tex-math></inline-formula>\n area. Experiments with free MBs in a microfluidic channel demonstrate that our system is able to capture key spectral components of MBs’ harmonics when sonicated at clinically relevant frequencies (0.5 MHz) and pressures (250 kPa). Together our results demonstrate that the proposed CMUT system can support the development of novel passive cavitation detectors (PCD) to track MB activity for attaining safe and effective focused ultrasound (FUS) treatments.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 9","pages":"1087-1096"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10620342/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tracking and controlling microbubble (MB) dynamics in the human brain through acoustic emission (AE) monitoring during transcranial focused ultrasound (tFUS) therapy are critical for attaining safe and effective treatments. The low-amplitude MB emissions have harmonic and ultra-harmonic components, necessitating a broad bandwidth and low-noise system for monitoring transcranial MB activity. Capacitive micromachined ultrasonic transducers (CMUTs) offer high sensitivity and low noise over a broad bandwidth, especially when they are tightly integrated with electronics, making them a good candidate technology for monitoring the MB activity through human skull. In this study, we designed a 16-channel analog front-end (AFE) electronics with a low-noise transimpedance amplifier (TIA), a band-gap reference circuit, and an output buffer stage. To assess AFE performance and ability to detect MB AE, we combined it with a commercial CMUT array. The integrated system has ${12}.{3}$ ${61}.{25} ~\text {mV}/\text {Pa}$ receive sensitivity with ${0}.{085}$ ${0}.{23}~\text {mPa}/\text {(}\text {Hz}\text {)}^{1/2}$ minimum detectable pressure (MDP) up to 3 MHz for a single element CMUT with 3.78 $\text {mm}^{{2}}$ area. Experiments with free MBs in a microfluidic channel demonstrate that our system is able to capture key spectral components of MBs’ harmonics when sonicated at clinically relevant frequencies (0.5 MHz) and pressures (250 kPa). Together our results demonstrate that the proposed CMUT system can support the development of novel passive cavitation detectors (PCD) to track MB activity for attaining safe and effective focused ultrasound (FUS) treatments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 CMUT 的高灵敏度被动空化探测器,用于监测聚焦超声介入过程中的微泡动态。
在经颅聚焦超声治疗(tFUS)过程中,通过声发射监测跟踪和控制人脑中的微泡(MB)动态,对于实现安全有效的治疗至关重要。低振幅 MB 发射具有谐波和超谐波成分,因此需要一个宽带宽、低噪声的系统来监测经颅 MB 活动。电容式微机械超声波传感器(CMUT)在宽带宽范围内具有高灵敏度和低噪声的特点,特别是当它们与电子元件紧密集成时,使其成为监测经颅甲基溴活动的理想候选技术。在这项研究中,我们设计了一个 16 通道模拟前端电子设备(AFE),其中包括一个低噪声跨阻抗放大器(TIA)、一个带隙参考电路和一个输出缓冲级。为了评估 AFE 的性能和检测 MB 声发射的能力,我们将其与商用 CMUT 阵列相结合。对于面积为 3.78 平方毫米的单元件 CMUT,集成系统的接收灵敏度为 12.3 - 61.25 mV/Pa,最小检测压力为 0.085 - 0.23 mPa/ √ Hz,频率可达 3 MHz。用微流体通道中的游离微气泡进行的实验表明,当在临床相关频率(0.5 MHz)和压力(250 kPa)下进行超声时,我们的系统能够捕捉 MB 谐波的关键频谱成分。我们的研究结果表明,拟议的 CMUT 系统可以支持新型被动空化探测器的开发,以跟踪 MB 的活动,从而实现安全有效的 FUS 治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
TinyProbe: A Wearable 32-channel Multi-Modal Wireless Ultrasound Probe. LSMD: Long-Short Memory-Based Detection Network for Carotid Artery Detection in B-mode Ultrasound Video Streams. A Phantom-Free Approach for Estimating the Backscatter Coefficient of Aggregated Red Blood Cells applied to COVID-19 Patients. High-frequency wearable ultrasound array belt for small animal echocardiography. Deep Power-aware Tunable Weighting for Ultrasound Microvascular Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1