Deep subwavelength topological edge state in a hyperbolic medium

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-08-01 DOI:10.1038/s41565-024-01737-8
Lorenzo Orsini, Hanan Herzig Sheinfux, Yandong Li, Seojoo Lee, Gian Marcello Andolina, Orazio Scarlatella, Matteo Ceccanti, Karuppasamy Soundarapandian, Eli Janzen, James H. Edgar, Gennady Shvets, Frank H. L. Koppens
{"title":"Deep subwavelength topological edge state in a hyperbolic medium","authors":"Lorenzo Orsini, Hanan Herzig Sheinfux, Yandong Li, Seojoo Lee, Gian Marcello Andolina, Orazio Scarlatella, Matteo Ceccanti, Karuppasamy Soundarapandian, Eli Janzen, James H. Edgar, Gennady Shvets, Frank H. L. Koppens","doi":"10.1038/s41565-024-01737-8","DOIUrl":null,"url":null,"abstract":"Topological photonics offers the opportunity to control light propagation in a way that is robust from fabrication disorders and imperfections. However, experimental demonstrations have remained on the order of the vacuum wavelength. Theoretical proposals have shown topological edge states that can propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Here we show the experimental proof of these deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a van der Waals heterostructure composed of isotopically pure hexagonal boron nitride flakes on patterned gold films. The topological edge state is confined in a subdiffraction volume of 0.021 µm3, which is four orders of magnitude smaller than the free-space excitation wavelength volume used to probe the system, while maintaining the resonance quality factor above 100. This finding can be directly extended to and hybridized with other van der Waals materials to broadened operational frequency ranges, streamline integration of diverse polaritonic materials, and compatibility with electronic and excitonic systems. A photonic topological edge state, achieved by employing hexagonal boron nitride and patterned gold films, confines light four orders of magnitude below the diffraction limit while preserving a high quality factor.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 10","pages":"1485-1490"},"PeriodicalIF":38.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01737-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological photonics offers the opportunity to control light propagation in a way that is robust from fabrication disorders and imperfections. However, experimental demonstrations have remained on the order of the vacuum wavelength. Theoretical proposals have shown topological edge states that can propagate robustly while embracing deep subwavelength confinement that defies diffraction limits. Here we show the experimental proof of these deep subwavelength topological edge states by implementing periodic modulation of hyperbolic phonon polaritons within a van der Waals heterostructure composed of isotopically pure hexagonal boron nitride flakes on patterned gold films. The topological edge state is confined in a subdiffraction volume of 0.021 µm3, which is four orders of magnitude smaller than the free-space excitation wavelength volume used to probe the system, while maintaining the resonance quality factor above 100. This finding can be directly extended to and hybridized with other van der Waals materials to broadened operational frequency ranges, streamline integration of diverse polaritonic materials, and compatibility with electronic and excitonic systems. A photonic topological edge state, achieved by employing hexagonal boron nitride and patterned gold films, confines light four orders of magnitude below the diffraction limit while preserving a high quality factor.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双曲介质中的深亚波长拓扑边缘态。
拓扑光子学为控制光的传播提供了机会,这种方法不受制造失调和缺陷的影响。然而,实验演示仍然停留在真空波长的数量级上。理论上的建议表明,拓扑边缘态可以稳健地传播,同时具有深亚波长约束,打破了衍射极限。在这里,我们通过在范德华异质结构中对双曲声子极化子进行周期性调制,展示了这些深亚波长拓扑边缘态的实验证明,该异质结构由图案化金薄膜上的同位素纯六方氮化硼薄片组成。拓扑边缘态被限制在 0.021 µm3 的亚衍射体积内,比用于探测该系统的自由空间激发波长体积小四个数量级,同时共振品质因数保持在 100 以上。这一发现可以直接扩展到其他范德华材料并与之杂交,从而拓宽工作频率范围,简化各种极性材料的集成,并与电子和激子系统兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Organic radio-afterglow nanoprobes for cancer theranostics A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene Full on-device manipulation of olefin metathesis for precise manufacturing Fully integrated multi-mode optoelectronic memristor array for diversified in-sensor computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1