{"title":"Recent developments in understanding RIG-I's activation and oligomerization.","authors":"Justyna Sikorska, Daniel F Wyss","doi":"10.1177/00368504241265182","DOIUrl":null,"url":null,"abstract":"<p><p>Insights into mechanisms driving either activation or inhibition of immune response are crucial in understanding the pathology of various diseases. The differentiation of viral from endogenous RNA in the cytoplasm by pattern-recognition receptors, such as retinoic acid-inducible gene I (RIG-I), is one of the essential paths for timely activation of an antiviral immune response through induction of type I interferons (IFN). In this mini-review, we describe the most recent developments centered around RIG-I's structure and mechanism of action. We summarize the paradigm-changing work over the past few years that helped us better understand RIG-I's monomeric and oligomerization states and their role in conveying immune response. We also discuss potential applications of the modulation of the RIG-I pathway in preventing autoimmune diseases or induction of immunity against viral infections. Overall, our review aims to summarize innovative research published in the past few years to help clarify questions that have long persisted around RIG-I.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 3","pages":"368504241265182"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297509/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241265182","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Insights into mechanisms driving either activation or inhibition of immune response are crucial in understanding the pathology of various diseases. The differentiation of viral from endogenous RNA in the cytoplasm by pattern-recognition receptors, such as retinoic acid-inducible gene I (RIG-I), is one of the essential paths for timely activation of an antiviral immune response through induction of type I interferons (IFN). In this mini-review, we describe the most recent developments centered around RIG-I's structure and mechanism of action. We summarize the paradigm-changing work over the past few years that helped us better understand RIG-I's monomeric and oligomerization states and their role in conveying immune response. We also discuss potential applications of the modulation of the RIG-I pathway in preventing autoimmune diseases or induction of immunity against viral infections. Overall, our review aims to summarize innovative research published in the past few years to help clarify questions that have long persisted around RIG-I.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.