Model Attention Expansion for Few-Shot Class-Incremental Learning

Xuan Wang;Zhong Ji;Yunlong Yu;Yanwei Pang;Jungong Han
{"title":"Model Attention Expansion for Few-Shot Class-Incremental Learning","authors":"Xuan Wang;Zhong Ji;Yunlong Yu;Yanwei Pang;Jungong Han","doi":"10.1109/TIP.2024.3434475","DOIUrl":null,"url":null,"abstract":"Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model’s recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10620359/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model’s recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
少镜头类增量学习的注意力扩展模型
少量类增量学习(FSCIL)旨在从有限的训练实例中增量学习新知识,同时不遗忘以前的知识。然而,我们发现现有的方法面临着一个被称为 "监督崩溃"(supervision collapse)的挑战,即模型不成比例地强调基础类的特定类特征,而忽略了新的类表征,从而导致认知能力受限。为了缓解这一问题,我们提出了一个新的框架,即 "少量类增量学习的注意力扩展模型(MTE-FSCIL)",旨在扩展模型的注意力领域,以提高可迁移性,同时不影响对基类的判别能力。具体来说,该框架采用双阶段训练策略,包括预训练和元训练阶段。在预训练阶段,我们提出了一种新的正则化技术,名为 "Reserver(RS)损失",以扩大全局感知,并通过放大特征图激活来减少对特定类别特征的过度依赖。在元训练阶段,我们引入了 Repeller(RP)损失,这是一种基于配对的新型损失,通过在嵌入空间内分散类内样本,促进表征的变化并提高模型对样本唯一性的识别能力。此外,我们还提出了一种转换适应(TA)策略,以持续吸收来自下游任务的新知识,从而促进跨任务知识转移。在 mini-ImageNet、CIFAR100 和 CUB200 数据集上的大量实验结果表明,我们提出的框架始终优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Balanced Destruction-Reconstruction Dynamics for Memory-Replay Class Incremental Learning Blind Video Quality Prediction by Uncovering Human Video Perceptual Representation. Contrastive Open-set Active Learning based Sample Selection for Image Classification. Generating Stylized Features for Single-Source Cross-Dataset Palmprint Recognition With Unseen Target Dataset Learning Prompt-Enhanced Context Features for Weakly-Supervised Video Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1