Xiaohan Liu, Patrick Plötz, Sonia Yeh, Zhengke Liu, Xiaoyue Cathy Liu, Xiaolei Ma
{"title":"Transforming public transport depots into profitable energy hubs","authors":"Xiaohan Liu, Patrick Plötz, Sonia Yeh, Zhengke Liu, Xiaoyue Cathy Liu, Xiaolei Ma","doi":"10.1038/s41560-024-01580-0","DOIUrl":null,"url":null,"abstract":"Transportation is undergoing rapid electrification, with electric buses at the forefront of public transport, especially in China. This transition, however, could strain electricity grids. Using a large-scale dataset with over 200 million global positioning system records from 20,992 buses in Beijing, we explore the technical, economic and environmental implications of transforming public transport depots into renewable energy hubs. Here we show that solar photovoltaic reduces the grid’s net charging load by 23% during electricity generation periods and lowers the net charging peak load by 8.6%. Integrating energy storage amplifies these reductions to 28% and 37.4%, respectively. Whereas unsubsidized solar photovoltaic yields profit 64% above costs, adding battery storage cuts profits to 31% despite offering grid benefits. Negative marginal abatement gains for CO2 emissions underscore the economic sustainability. Our findings provide a model for cities worldwide to accelerate their commitments towards sustainable transport and energy systems. Electric bus charging could strain electricity grids with intensive charging. Here the authors present a data-driven framework to transform bus depots into grid-friendly profitable energy hubs using solar photovoltaic and energy storage systems.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 10","pages":"1206-1219"},"PeriodicalIF":49.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01580-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Transportation is undergoing rapid electrification, with electric buses at the forefront of public transport, especially in China. This transition, however, could strain electricity grids. Using a large-scale dataset with over 200 million global positioning system records from 20,992 buses in Beijing, we explore the technical, economic and environmental implications of transforming public transport depots into renewable energy hubs. Here we show that solar photovoltaic reduces the grid’s net charging load by 23% during electricity generation periods and lowers the net charging peak load by 8.6%. Integrating energy storage amplifies these reductions to 28% and 37.4%, respectively. Whereas unsubsidized solar photovoltaic yields profit 64% above costs, adding battery storage cuts profits to 31% despite offering grid benefits. Negative marginal abatement gains for CO2 emissions underscore the economic sustainability. Our findings provide a model for cities worldwide to accelerate their commitments towards sustainable transport and energy systems. Electric bus charging could strain electricity grids with intensive charging. Here the authors present a data-driven framework to transform bus depots into grid-friendly profitable energy hubs using solar photovoltaic and energy storage systems.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.