Optimizing wolfberry crop productivity and economic sustainability using subsurface irrigation with ceramic emitters for smallholders: A four-year study

IF 4.5 1区 农林科学 Q1 AGRONOMY European Journal of Agronomy Pub Date : 2024-07-30 DOI:10.1016/j.eja.2024.127293
{"title":"Optimizing wolfberry crop productivity and economic sustainability using subsurface irrigation with ceramic emitters for smallholders: A four-year study","authors":"","doi":"10.1016/j.eja.2024.127293","DOIUrl":null,"url":null,"abstract":"<div><p>In the face of rapid population growth, scarce water resources, and changing climate conditions, smallholders confront significant challenges in maintaining the productivity of their agroecosystems. Traditional irrigation methods are often expensive and inefficient, limiting the potential for increasing crop yields. To address these issues, this study designed a subsurface irrigation system with ceramic emitters (SICE). SICE adjusted the discharge of emitters through the difference between the working head and soil water potential to provide a continuous water supply and maintain stable soil moisture. A four-year field study and economic analysis under two irrigation systems were conducted for wolfberry cultivation in Northwest China. Results showed that SICE created soil water content at 60 %-90 % field capacity, increased the photosynthetic rate of wolfberry leaves by 67.17 % and reduced malondialdehyde content by 13.61 % compared with surface drip irrigation (SDI). In comparison, SICE was better than SDI with the average increase in yield by 29.46 %, WUE by 9.97 % and IWUE by 31.71 % in four years. Furthermore, applying the SICE system reduced the total cost by 11.13 % while increasing the total return by 20.90 % compared with SDI. Therefore, the SICE system is an effective irrigation method that provides a suitable soil moisture environment for wolfberry cultivation of smallholders in northwest China, resulting in improved yield and reduced costs.</p></div>","PeriodicalId":51045,"journal":{"name":"European Journal of Agronomy","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Agronomy","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1161030124002144","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

In the face of rapid population growth, scarce water resources, and changing climate conditions, smallholders confront significant challenges in maintaining the productivity of their agroecosystems. Traditional irrigation methods are often expensive and inefficient, limiting the potential for increasing crop yields. To address these issues, this study designed a subsurface irrigation system with ceramic emitters (SICE). SICE adjusted the discharge of emitters through the difference between the working head and soil water potential to provide a continuous water supply and maintain stable soil moisture. A four-year field study and economic analysis under two irrigation systems were conducted for wolfberry cultivation in Northwest China. Results showed that SICE created soil water content at 60 %-90 % field capacity, increased the photosynthetic rate of wolfberry leaves by 67.17 % and reduced malondialdehyde content by 13.61 % compared with surface drip irrigation (SDI). In comparison, SICE was better than SDI with the average increase in yield by 29.46 %, WUE by 9.97 % and IWUE by 31.71 % in four years. Furthermore, applying the SICE system reduced the total cost by 11.13 % while increasing the total return by 20.90 % compared with SDI. Therefore, the SICE system is an effective irrigation method that provides a suitable soil moisture environment for wolfberry cultivation of smallholders in northwest China, resulting in improved yield and reduced costs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为小农户使用陶瓷喷头进行地表下灌溉,优化枸杞作物生产率和经济可持续性:为期四年的研究
面对快速的人口增长、稀缺的水资源和不断变化的气候条件,小农户在维持其农业生态系统的生产力方面面临着巨大挑战。传统的灌溉方法往往成本高、效率低,限制了提高作物产量的潜力。为解决这些问题,本研究设计了一种带陶瓷喷头的地下灌溉系统(SICE)。SICE 通过工作水头和土壤水势之间的差值来调节喷头的出水量,从而提供持续的供水并保持稳定的土壤水分。针对中国西北地区的枸杞种植,在两种灌溉系统下进行了为期四年的田间研究和经济分析。结果表明,与地面滴灌(SDI)相比,SICE 可使土壤含水量保持在田间持水量的 60 %-90 %,枸杞叶片的光合速率提高了 67.17 %,丙二醛含量降低了 13.61 %。相比之下,SICE 比 SDI 更好,四年内平均增产 29.46 %,WUE 增加 9.97 %,IWUE 增加 31.71 %。此外,与 SDI 相比,采用 SICE 系统降低了 11.13 % 的总成本,同时增加了 20.90 % 的总收益。因此,SICE 系统是一种有效的灌溉方法,可为西北地区小农户的枸杞种植提供适宜的土壤水分环境,从而提高产量并降低成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Agronomy
European Journal of Agronomy 农林科学-农艺学
CiteScore
8.30
自引率
7.70%
发文量
187
审稿时长
4.5 months
期刊介绍: The European Journal of Agronomy, the official journal of the European Society for Agronomy, publishes original research papers reporting experimental and theoretical contributions to field-based agronomy and crop science. The journal will consider research at the field level for agricultural, horticultural and tree crops, that uses comprehensive and explanatory approaches. The EJA covers the following topics: crop physiology crop production and management including irrigation, fertilization and soil management agroclimatology and modelling plant-soil relationships crop quality and post-harvest physiology farming and cropping systems agroecosystems and the environment crop-weed interactions and management organic farming horticultural crops papers from the European Society for Agronomy bi-annual meetings In determining the suitability of submitted articles for publication, particular scrutiny is placed on the degree of novelty and significance of the research and the extent to which it adds to existing knowledge in agronomy.
期刊最新文献
Estimating the temperature sensitivity of rice (Oryza sativa L.) yield and its components in China using the CERES-Rice model Citrus pose estimation under complex orchard environment for robotic harvesting Shallow drains and straw mulch alleviate multiple constraints to increase sunflower yield on a clay-textured saline soil I. Effects of decreased soil salinity, waterlogging and end-of-season drought Understanding increased grain yield and water use efficiency by plastic mulch from water input to harvest index for dryland maize in China’s Loess Plateau Growth conditions but not the variety, affect the yield, seed oil and meal protein of camelina under Mediterranean conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1