Zane A Zook, Odnan Galvan, Ozioma Ozor-Ilo, Emre Selcuk, Marcia K O'Malley
{"title":"Validation of Snaptics: A Modular Approach to Low-Cost Wearable Multi-Sensory Haptics.","authors":"Zane A Zook, Odnan Galvan, Ozioma Ozor-Ilo, Emre Selcuk, Marcia K O'Malley","doi":"10.1109/TOH.2024.3437766","DOIUrl":null,"url":null,"abstract":"<p><p>Wearable haptic devices provide touch feedback to users for applications including virtual reality, prosthetics, and navigation. When these devices are designed for experimental validation in research settings, they are often highly specialized and customized to the specific application being studied. As such, it can be difficult to replicate device hardware due to the associated high costs of customized components and the complexity of their design and construction. In this work, we present Snaptics, a simple and modular platform designed for rapid prototyping of fully wearable multi-sensory haptic devices using 3D-printed modules and inexpensive off-the-shelf components accessible to the average hobbyist. We demonstrate the versatility of the modular system and the salience of haptic cues produced by wearables constructed with Snaptics modules in two human subject experiments. First, we report on the identification accuracy of multi-sensory haptic cues delivered by a Snaptics device. Second, we compare the effectiveness of the Snaptics Vibrotactile Bracelet to the Syntacts Bracelet, a high-fidelity wearable vibration feedback bracelet, in assisting participants with a virtual reality sorting task. Results indicate that participant performance was comparable in perceiving cue sets and in completing tasks when interacting with low-cost Snaptics devices as compared to a similar research-grade haptic wearables.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3437766","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable haptic devices provide touch feedback to users for applications including virtual reality, prosthetics, and navigation. When these devices are designed for experimental validation in research settings, they are often highly specialized and customized to the specific application being studied. As such, it can be difficult to replicate device hardware due to the associated high costs of customized components and the complexity of their design and construction. In this work, we present Snaptics, a simple and modular platform designed for rapid prototyping of fully wearable multi-sensory haptic devices using 3D-printed modules and inexpensive off-the-shelf components accessible to the average hobbyist. We demonstrate the versatility of the modular system and the salience of haptic cues produced by wearables constructed with Snaptics modules in two human subject experiments. First, we report on the identification accuracy of multi-sensory haptic cues delivered by a Snaptics device. Second, we compare the effectiveness of the Snaptics Vibrotactile Bracelet to the Syntacts Bracelet, a high-fidelity wearable vibration feedback bracelet, in assisting participants with a virtual reality sorting task. Results indicate that participant performance was comparable in perceiving cue sets and in completing tasks when interacting with low-cost Snaptics devices as compared to a similar research-grade haptic wearables.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.