Enhancing the antioxidant potential of ESIPT-based naringenin flavonoids based on excited state hydrogen bond dynamics: A theoretical study

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of photochemistry and photobiology. B, Biology Pub Date : 2024-07-31 DOI:10.1016/j.jphotobiol.2024.112996
Xingzhu Tang , Lingling Wang , Yajie Zhang , Chaofan Sun , Zhanhua Huang
{"title":"Enhancing the antioxidant potential of ESIPT-based naringenin flavonoids based on excited state hydrogen bond dynamics: A theoretical study","authors":"Xingzhu Tang ,&nbsp;Lingling Wang ,&nbsp;Yajie Zhang ,&nbsp;Chaofan Sun ,&nbsp;Zhanhua Huang","doi":"10.1016/j.jphotobiol.2024.112996","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring antioxidant potential of flavonoid derivatives after ESIPT process provides a theoretical basis for discovering compounds with higher antioxidant capacity. In this work, employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods, the antioxidant potential of two citrus-derived naringenin flavonoids after ESIPT process is explored. Based on studies of ESIPT process including IMHB intensity variations, potential energy curves, and transition state, these molecules exist only in enol and keto<sup>⁎</sup> forms due to ultra-fast ESIPT. The HOMOs are utilized to explore electron-donating capacity, demonstrating that the molecules in keto<sup>⁎</sup> form is stronger than that in enol form. Furthermore, the atomic dipole moment corrected Hirshfeld population (ADCH) and Fukui functions indicate that the sites attacked by the electrophilic free radical of the two molecules in the keto<sup>⁎</sup> form are O<sub>3</sub> and O<sub>5’</sub> respectively, and both are more active than in the enol form. Overall, a comprehensive consideration of the ESIPT process and antioxidant potential of flavonoid derivatives will facilitate the exploration and design of substances with higher antioxidant capacity.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"258 ","pages":"Article 112996"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134424001568","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Exploring antioxidant potential of flavonoid derivatives after ESIPT process provides a theoretical basis for discovering compounds with higher antioxidant capacity. In this work, employing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods, the antioxidant potential of two citrus-derived naringenin flavonoids after ESIPT process is explored. Based on studies of ESIPT process including IMHB intensity variations, potential energy curves, and transition state, these molecules exist only in enol and keto forms due to ultra-fast ESIPT. The HOMOs are utilized to explore electron-donating capacity, demonstrating that the molecules in keto form is stronger than that in enol form. Furthermore, the atomic dipole moment corrected Hirshfeld population (ADCH) and Fukui functions indicate that the sites attacked by the electrophilic free radical of the two molecules in the keto form are O3 and O5’ respectively, and both are more active than in the enol form. Overall, a comprehensive consideration of the ESIPT process and antioxidant potential of flavonoid derivatives will facilitate the exploration and design of substances with higher antioxidant capacity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激发态氢键动力学增强基于 ESIPT 的柚皮苷类黄酮的抗氧化潜力:理论研究。
探索黄酮类衍生物经 ESIPT 处理后的抗氧化潜力为发现具有更高抗氧能力的化合物提供了理论依据。本研究采用密度泛函理论(DFT)和时间相关密度泛函理论(TD-DFT)方法,探讨了两种柑橘类柚皮苷黄酮类化合物经 ESIPT 处理后的抗氧化潜力。基于对 ESIPT 过程(包括 IMHB 强度变化、势能曲线和过渡态)的研究,由于超快的 ESIPT,这些分子仅以烯醇和酮⁎的形式存在。利用 HOMOs 来探索电子供能能力,结果表明酮⁎形式的分子比烯醇形式的分子更强。此外,原子偶极矩校正后的 Hirshfeld 种群(ADCH)和 Fukui 函数表明,酮⁎形式的两种分子的亲电自由基攻击的位点分别是 O3 和 O5',这两个位点都比烯醇形式的分子更活跃。总之,全面考虑黄酮类衍生物的 ESIPT 过程和抗氧化潜力将有助于探索和设计抗氧化能力更强的物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
期刊最新文献
Milk-derived exosome-loaded SS31 as a novel strategy to mitigate UV-induced photodamage in skin Synergistic mechanism of magneto-optical sensing mediated by magnetic response protein Amb0994 and LOV-like protein Amb2291 in Magnetospirillum magneticum AMB-1 Vicenin-2 reduces inflammation and apoptosis to relieve skin photoaging via suppressing GSK3β Microstructural regulation of Ir(III) complexes for enhanced photocytotoxicity in photodynamic cancer therapy Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1