Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases.

IF 7.9 2区 医学 Q1 IMMUNOLOGY Seminars in Immunopathology Pub Date : 2024-08-02 DOI:10.1007/s00281-024-01016-7
Ajmal Ahmad, Anneliesse Braden, Sazzad Khan, Jianfeng Xiao, Mohammad Moshahid Khan
{"title":"Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases.","authors":"Ajmal Ahmad, Anneliesse Braden, Sazzad Khan, Jianfeng Xiao, Mohammad Moshahid Khan","doi":"10.1007/s00281-024-01016-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Immunopathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00281-024-01016-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA 损伤反应和细胞衰老之间的相互影响是衰老和老年相关疾病的驱动因素。
细胞衰老是细胞周期不可逆转停滞的一个关键过程,在这一过程中,细胞仍然存活,但在不同类型的压力下永久无法增殖。越来越多的证据表明,DNA损伤会随着时间的推移而加重,并触发DNA损伤应答信号,从而导致细胞衰老。细胞衰老是炎症反应持续存在的平台,也是许多与年龄相关疾病的核心原因。DNA 修复基因缺陷或衰老可导致早衰疾病。限制 DNA 损伤或衰老的治疗方法有助于拯救长寿和神经保护的表型,从而表明 DNA 损伤和衰老之间存在机理上的相互作用。在此,我们以独特的视角探讨了 DNA 损伤应答途径与衰老之间的相互影响以及它们对老年相关疾病的贡献。我们进一步总结了衰老机制和治疗方法的最新进展,探讨了现有的挑战,并提供了衰老领域的新见解和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Seminars in Immunopathology
Seminars in Immunopathology 医学-病理学
CiteScore
19.80
自引率
2.20%
发文量
69
审稿时长
12 months
期刊介绍: The aim of Seminars in Immunopathology is to bring clinicians and pathologists up-to-date on developments in the field of immunopathology.For this purpose topical issues will be organized usually with the help of a guest editor.Recent developments are summarized in review articles by authors who have personally contributed to the specific topic.
期刊最新文献
Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system. The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. Advances in manufacturing chimeric antigen receptor immune cell therapies. Beyond defence: Immune architects of ovarian health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1