首页 > 最新文献

Seminars in Immunopathology最新文献

英文 中文
Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration. 透明质酸及其化学衍生物在免疫平衡、癌症和组织再生中的作用。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-09-06 DOI: 10.1007/s00281-024-01024-7
Paolo Rosales, Daiana Vitale, Antonella Icardi, Ina Sevic, Laura Alaniz

Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.

在过去的几十年里,科学家们已经认识到细胞外基质(ECM)的各种成分在维持同态免疫方面发挥着至关重要的作用。此外,这些成分的合成或降解水平失调会直接影响肿瘤过程造成组织损伤时的免疫反应机制,或组织本身受损时的再生机制。ECM 是由蛋白质化合物、蛋白聚糖和糖胺聚糖 (GAG) 组成的复杂网络。透明质酸(HA)是这一网络中的主要 GAGs 之一,其新陈代谢受到严格的生理调控,并在损伤过程中迅速改变,影响从干细胞到分化免疫细胞等不同细胞的行为。在本次修订中,我们将讨论原生或化学修饰的 HA 如何与其特定受体相互作用,并调节免疫细胞的细胞内和细胞间通信,重点关注癌症和组织再生情况。
{"title":"Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration.","authors":"Paolo Rosales, Daiana Vitale, Antonella Icardi, Ina Sevic, Laura Alaniz","doi":"10.1007/s00281-024-01024-7","DOIUrl":"https://doi.org/10.1007/s00281-024-01024-7","url":null,"abstract":"<p><p>Over the last few decades, scientists have recognized the critical role that various components of the extracellular matrix (ECM) play in maintaining homeostatic immunity. Besides, dysregulation in the synthesis or degradation levels of these components directly impacts the mechanisms of immune response during tissue injury caused by tumor processes or the regeneration of the tissue itself in the event of damage. ECM is a complex network of protein compounds, proteoglycans and glycosaminoglycans (GAGs). Hyaluronic acid (HA) is one of the major GAGs of this network, whose metabolism is strictly physiologically regulated and quickly altered in injury processes, affecting the behavior of different cells, from stem cells to differentiated immune cells. In this revision we discuss how the native or chemically modified HA interacts with its specific receptors and modulates intra and intercellular communication of immune cells, focusing on cancer and tissue regeneration conditions.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system. 母体免疫激活(MIA)对后代免疫系统的胎儿编程效应。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-30 DOI: 10.1007/s00281-024-01023-8
Naomi Hofsink, Lucianne Groenink, Torsten Plösch

The first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders. Moreover, lasting effects of maternal immune activation on the offspring's immune system have been reported. Taken together, this indicates that the effect of maternal immune activation is not limited to the central nervous system. Here, we explore the impact of maternal immune activation on the immune system of the offspring. We first describe the development of the immune system and provide an overview of reported alterations in the cytokine profiles, immune cell profiles, immune cell function, and immune induction in pre-clinical models. Additionally, we highlight recent research on the impact of maternal COVID-19 exposure on the neonatal immune system and the potential health consequences for the child. Our review shows that maternal immune activation alters the offspring's immune system under certain conditions, but the reported effects are conflicting and inconsistent. In general, epigenetic modifications are considered the mechanism for fetal programming. The available data was insufficient to identify specific pathways that may contribute to immune programming. As a consequence of the COVID-19 pandemic, more research now focuses on the possible health effects of maternal immune activation on the offspring. Future research addressing the offspring's immune response to maternal immune activation can elucidate specific pathways that contribute to fetal immune programming and the long-term health effects for the offspring.

生命最初的 1000 天是发育的关键时期,在此期间,不利的环境会对儿童的健康造成长期影响。母体免疫激活与儿童神经发育障碍的风险增加有关。据报道,神经发育障碍患者的免疫反应异常。此外,母体免疫激活对后代免疫系统的持久影响也有报道。综上所述,这表明母体免疫激活的影响并不局限于中枢神经系统。在此,我们探讨了母体免疫激活对后代免疫系统的影响。我们首先描述了免疫系统的发育过程,并概述了临床前模型中细胞因子谱、免疫细胞谱、免疫细胞功能和免疫诱导的变化。此外,我们还重点介绍了有关母体接触 COVID-19 对新生儿免疫系统的影响以及对儿童健康的潜在后果的最新研究。我们的综述显示,在某些条件下,母体的免疫激活会改变后代的免疫系统,但所报道的影响是相互矛盾和不一致的。一般来说,表观遗传修饰被认为是胎儿编程的机制。现有数据不足以确定可能导致免疫编程的具体途径。由于 COVID-19 的流行,现在更多的研究集中于母体免疫激活对后代健康可能产生的影响。未来针对后代对母体免疫激活的免疫反应的研究,可以阐明有助于胎儿免疫编程和对后代长期健康影响的具体途径。
{"title":"The fetal programming effect of maternal immune activation (MIA) on the offspring's immune system.","authors":"Naomi Hofsink, Lucianne Groenink, Torsten Plösch","doi":"10.1007/s00281-024-01023-8","DOIUrl":"https://doi.org/10.1007/s00281-024-01023-8","url":null,"abstract":"<p><p>The first 1000 days of life is a critical period of development in which adverse circumstances can have long-term consequences for the child's health. Maternal immune activation is associated with increased risk of neurodevelopmental disorders in the child. Aberrant immune responses have been reported in individuals with neurodevelopmental disorders. Moreover, lasting effects of maternal immune activation on the offspring's immune system have been reported. Taken together, this indicates that the effect of maternal immune activation is not limited to the central nervous system. Here, we explore the impact of maternal immune activation on the immune system of the offspring. We first describe the development of the immune system and provide an overview of reported alterations in the cytokine profiles, immune cell profiles, immune cell function, and immune induction in pre-clinical models. Additionally, we highlight recent research on the impact of maternal COVID-19 exposure on the neonatal immune system and the potential health consequences for the child. Our review shows that maternal immune activation alters the offspring's immune system under certain conditions, but the reported effects are conflicting and inconsistent. In general, epigenetic modifications are considered the mechanism for fetal programming. The available data was insufficient to identify specific pathways that may contribute to immune programming. As a consequence of the COVID-19 pandemic, more research now focuses on the possible health effects of maternal immune activation on the offspring. Future research addressing the offspring's immune response to maternal immune activation can elucidate specific pathways that contribute to fetal immune programming and the long-term health effects for the offspring.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits. 成功的标志:疫苗诱导的皮肤疤痕形成对卡介苗和天花疫苗相关临床益处的作用。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-26 DOI: 10.1007/s00281-024-01022-9
Ole Bæk, Frederik Schaltz-Buchholzer, Anita Campbell, Nelly Amenyogbe, James Campbell, Peter Aaby, Christine Stabell Benn, Tobias R Kollmann

Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.

接种卡介苗(Bacille Calmette-Guérin,BCG)或天花疫苗(Vaccinia)后形成的皮肤疤痕是成功接种疫苗和 "接种成功 "的既定标志。卡介苗和天花疫苗具有强大的病原体特异性(肺结核;天花)和病原体区分性(可预防与有意针对的病原体无关的疾病)效果,具有巨大的转化潜力。然而,尽管卡介苗和天花疫苗已被使用了几个世纪,但疤痕是如何形成的,以及局部皮肤事件如何与全身效应相关联,从而使这两种疫苗能够产生强大的健康促进效应,这些都尚未确定。我们在此回顾了目前已知的皮肤事件,并将这些知识与这两种疫苗对人类健康的整体影响结合起来,尤其关注母婴健康。
{"title":"The mark of success: The role of vaccine-induced skin scar formation for BCG and smallpox vaccine-associated clinical benefits.","authors":"Ole Bæk, Frederik Schaltz-Buchholzer, Anita Campbell, Nelly Amenyogbe, James Campbell, Peter Aaby, Christine Stabell Benn, Tobias R Kollmann","doi":"10.1007/s00281-024-01022-9","DOIUrl":"10.1007/s00281-024-01022-9","url":null,"abstract":"<p><p>Skin scar formation following Bacille Calmette-Guérin (BCG) or smallpox (Vaccinia) vaccination is an established marker of successful vaccination and 'vaccine take'. Potent pathogen-specific (tuberculosis; smallpox) and pathogen-agnostic (protection from diseases unrelated to the intentionally targeted pathogen) effects of BCG and smallpox vaccines hold significant translational potential. Yet despite their use for centuries, how scar formation occurs and how local skin-based events relate to systemic effects that allow these two vaccines to deliver powerful health promoting effects has not yet been determined. We review here what is known about the events occurring in the skin and place this knowledge in the context of the overall impact of these two vaccines on human health with a particular focus on maternal-child health.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in manufacturing chimeric antigen receptor immune cell therapies. 制造嵌合抗原受体免疫细胞疗法的进展。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-16 DOI: 10.1007/s00281-024-01019-4
Apoorva Ramamurthy, Anna Tommasi, Krishanu Saha

Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.

生物医学研究在制造嵌合抗原受体 T 细胞(CAR-T)疗法方面取得了长足进步,标志着细胞免疫疗法进入了变革时代。然而,现有的自体细胞疗法制造方法在成本、免疫细胞来源、安全风险和可扩展性等方面仍存在一些挑战。这些挑战促使人们最近努力利用自动化封闭系统生物反应器和人工智能模型来优化细胞疗法的工艺开发和生产。与此同时,mRNA、CRISPR 基因组编辑和转座子等非病毒基因转移方法也被应用于 T 细胞和其他免疫细胞(如巨噬细胞和自然杀伤细胞)的工程化。目前正在开发原始免疫细胞和干细胞的替代来源,以产生通用的异体疗法,这标志着目前的自体疗法模式正在发生转变。这些多方面的生产创新凸显了在不断变化的癌症治疗环境中,推动这种治疗方法走向更广泛临床应用和改善患者预后的集体努力。在此,我们回顾了当前的 CAR 免疫细胞制造策略,并重点介绍了细胞疗法规模化、自动化、工艺开发和工程学方面的最新进展。
{"title":"Advances in manufacturing chimeric antigen receptor immune cell therapies.","authors":"Apoorva Ramamurthy, Anna Tommasi, Krishanu Saha","doi":"10.1007/s00281-024-01019-4","DOIUrl":"10.1007/s00281-024-01019-4","url":null,"abstract":"<p><p>Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141988836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond defence: Immune architects of ovarian health and disease. 超越防御:卵巢健康与疾病的免疫建筑师。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-12 DOI: 10.1007/s00281-024-01021-w
Maria Victoria Bazzano, Angela Köninger, Maria Emilia Solano

Throughout the individual's reproductive period of life the ovary undergoes continues changes, including cyclic processes of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to gametogenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts throughout the female's reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and disease remains to be thoroughly investigated.

在人一生的生殖期,卵巢会不断发生变化,包括细胞死亡、组织再生、增殖和血管化等循环过程。组织驻留的白细胞,尤其是巨噬细胞,在塑造卵巢功能和维持卵巢平衡方面发挥着至关重要的作用。巨噬细胞能促进卵泡和黄体的血管生成,从而支持类固醇的生成。最近关于巨噬细胞起源和早期组织播种的研究揭示了巨噬细胞在早期器官生成(如睾丸)中的重要作用。在此,我们回顾了有关产前卵巢白细胞(主要是具有血管生成特征的巨噬细胞)播种的证据及其与配子生成的联系。在出生前的卵巢中,生殖细胞会增殖、形成囊肿并发生变化,经过一轮又一轮的凋亡后,原始卵泡中的卵母细胞就诞生了。这些卵泡构成了女性整个生育期的卵巢储备。与此同时,定植于早期卵巢的卵黄囊衍生原始巨噬细胞逐渐被单核细胞衍生的胎儿巨噬细胞所取代或超过。然而,表明巨噬细胞定植与卵泡组装之间关系的线索尚不明确。巨噬细胞可能通过促进早期血管生成来促进器官生成。巨噬细胞是否有助于卵巢淋巴管生成或神经支配仍是未知数。卵巢器官生成和配子生成容易受到产前损伤的影响,可能导致日后的功能障碍,如多囊卵巢综合征中观察到的情况。实验证据和较少的流行病学证据表明,孕期的不良刺激可导致卵泡生成缺陷或后代卵泡储备减少。虽然卵巢对炎症高度敏感,但局部免疫反应对卵巢健康和疾病的影响仍有待深入研究。
{"title":"Beyond defence: Immune architects of ovarian health and disease.","authors":"Maria Victoria Bazzano, Angela Köninger, Maria Emilia Solano","doi":"10.1007/s00281-024-01021-w","DOIUrl":"10.1007/s00281-024-01021-w","url":null,"abstract":"<p><p>Throughout the individual's reproductive period of life the ovary undergoes continues changes, including cyclic processes of cell death, tissue regeneration, proliferation, and vascularization. Tissue-resident leucocytes particularly macrophages, play a crucial role in shaping ovarian function and maintaining homeostasis. Macrophages crucially promote angiogenesis in the follicles and corpora lutea, thereby supporting steroidogenesis. Recent research on macrophage origins and early tissue seeding has unveiled significant insights into their role in early organogenesis, e.g. in the testis. Here, we review evidence about the prenatal ovarian seeding of leucocytes, primarily macrophages with angiogenic profiles, and its connection to gametogenesis. In the prenatal ovary, germ cells proliferate, form cysts, and undergo changes that, following waves of apoptosis, give rice to the oocytes contained in primordial follicles. These follicles constitute the ovarian reserve that lasts throughout the female's reproductive life. Simultaneously, yolk-sac-derived primitive macrophages colonizing the early ovary are gradually replaced or outnumbered by monocyte-derived fetal macrophages. However, the cues indicating how macrophage colonization and follicle assembly are related are elusive. Macrophages may contribute to organogenesis by promoting early vasculogenesis. Whether macrophages contribute to ovarian lymphangiogenesis or innervation is still unknown. Ovarian organogenesis and gametogenesis are vulnerable to prenatal insults, potentially programming dysfunction in later life, as observed in polycystic ovary syndrome. Experimental and, more sparsely, epidemiological evidence suggest that adverse stimuli during pregnancy can program defective folliculogenesis or a diminished follicle reserve in the offspring. While the ovary is highly sensitive to inflammation, the involvement of local immune responses in programming ovarian health and disease remains to be thoroughly investigated.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141971802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases. DNA 损伤反应和细胞衰老之间的相互影响是衰老和老年相关疾病的驱动因素。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-08-02 DOI: 10.1007/s00281-024-01016-7
Ajmal Ahmad, Anneliesse Braden, Sazzad Khan, Jianfeng Xiao, Mohammad Moshahid Khan

Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.

细胞衰老是细胞周期不可逆转停滞的一个关键过程,在这一过程中,细胞仍然存活,但在不同类型的压力下永久无法增殖。越来越多的证据表明,DNA损伤会随着时间的推移而加重,并触发DNA损伤应答信号,从而导致细胞衰老。细胞衰老是炎症反应持续存在的平台,也是许多与年龄相关疾病的核心原因。DNA 修复基因缺陷或衰老可导致早衰疾病。限制 DNA 损伤或衰老的治疗方法有助于拯救长寿和神经保护的表型,从而表明 DNA 损伤和衰老之间存在机理上的相互作用。在此,我们以独特的视角探讨了 DNA 损伤应答途径与衰老之间的相互影响以及它们对老年相关疾病的贡献。我们进一步总结了衰老机制和治疗方法的最新进展,探讨了现有的挑战,并提供了衰老领域的新见解和未来方向。
{"title":"Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases.","authors":"Ajmal Ahmad, Anneliesse Braden, Sazzad Khan, Jianfeng Xiao, Mohammad Moshahid Khan","doi":"10.1007/s00281-024-01016-7","DOIUrl":"10.1007/s00281-024-01016-7","url":null,"abstract":"<p><p>Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early-life risk factors which govern pro-allergic immunity 影响抗过敏免疫力的早期生活风险因素
IF 9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-27 DOI: 10.1007/s00281-024-01020-x
Catherine Ptaschinski, Bernhard F. Gibbs

Allergic diseases affect up to 40% of the global population with a substantial rise in food allergies, in particular, over the past decades. For the majority of individuals with allergy fundamental programming of a pro-allergic immune system largely occurs in early childhood where it is crucially governed by prenatal genetic and environmental factors, including their interactions. These factors include several genetic aberrations, such as filaggrin loss-of-function mutations, early exposure to respiratory syncytial virus, and various chemicals such as plasticizers, as well as the influence of the gut microbiome and numerous lifestyle circumstances. The effects of such a wide range of factors on allergic responses to an array of potential allergens is complex and the severity of these responses in a clinical setting are subsequently not easy to predict at the present time. However, some parameters which condition a pro-allergic immune response, including severe anaphylaxis, are becoming clearer. This review summarises what we currently know, and don’t know, about the factors which influence developing pro-allergic immunity particularly during the early-life perinatal period.

过敏性疾病影响着高达 40% 的全球人口,尤其是在过去几十年中,食物过敏的发病率大幅上升。对于大多数过敏症患者来说,促过敏免疫系统的基本发育过程主要发生在幼儿时期,这主要受产前遗传和环境因素(包括它们之间的相互作用)的影响。这些因素包括几种基因畸变,如丝状绒毛蛋白功能缺失突变、早期接触呼吸道合胞病毒和塑化剂等各种化学物质,以及肠道微生物群和多种生活方式的影响。如此广泛的因素对一系列潜在过敏原的过敏反应的影响是复杂的,因此目前还不容易预测这些反应在临床环境中的严重程度。不过,一些能调节过敏性免疫反应(包括严重过敏性休克)的参数正变得越来越清晰。本综述总结了我们目前已知和未知的影响促过敏免疫力发展的因素,尤其是在围产期早期。
{"title":"Early-life risk factors which govern pro-allergic immunity","authors":"Catherine Ptaschinski, Bernhard F. Gibbs","doi":"10.1007/s00281-024-01020-x","DOIUrl":"https://doi.org/10.1007/s00281-024-01020-x","url":null,"abstract":"<p>Allergic diseases affect up to 40% of the global population with a substantial rise in food allergies, in particular, over the past decades. For the majority of individuals with allergy fundamental programming of a pro-allergic immune system largely occurs in early childhood where it is crucially governed by prenatal genetic and environmental factors, including their interactions. These factors include several genetic aberrations, such as filaggrin loss-of-function mutations, early exposure to respiratory syncytial virus, and various chemicals such as plasticizers, as well as the influence of the gut microbiome and numerous lifestyle circumstances. The effects of such a wide range of factors on allergic responses to an array of potential allergens is complex and the severity of these responses in a clinical setting are subsequently not easy to predict at the present time. However, some parameters which condition a pro-allergic immune response, including severe anaphylaxis, are becoming clearer. This review summarises what we currently know, and don’t know, about the factors which influence developing pro-allergic immunity particularly during the early-life perinatal period.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":9.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic Regulation in the Induction of Trained Immunity. 训练免疫诱导过程中的代谢调节
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-25 DOI: 10.1007/s00281-024-01015-8
Anaisa V Ferreira, Jorge Domínguez-Andrés, Laura M Merlo Pich, Leo A B Joosten, Mihai G Netea

The innate immune system exhibits features of memory, termed trained immunity, which promote faster and more robust responsiveness to heterologous challenges. Innate immune memory is sustained through epigenetic modifications, affecting gene accessibility, and promoting a tailored gene transcription for an enhanced immune response. Alterations in the epigenetic landscape are intertwined with metabolic rewiring. Here, we review the metabolic pathways that underscore the induction and maintenance of trained immunity, including glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, and amino acid and lipid metabolism. The intricate interplay of these pathways is pivotal for establishing innate immune memory in distinct cellular compartments. We explore in particular the case of resident lung alveolar macrophages. We propose that leveraging the memory of the innate immune system may present therapeutic potential. Specifically, targeting the metabolic programs of innate immune cells is an emerging strategy for clinical interventions, either to boost immune responses in immunosuppressed conditions or to mitigate maladaptive activation in hyperinflammatory diseases.

先天性免疫系统具有记忆特征,被称为训练有素的免疫力,可促进对异源挑战做出更快、更强的反应。先天性免疫记忆通过表观遗传修饰得以维持,影响基因的可及性,促进基因转录以增强免疫反应。表观遗传结构的改变与新陈代谢的重新布线相互交织。在这里,我们回顾了诱导和维持训练有素的免疫力的代谢途径,包括糖酵解、氧化磷酸化、三羧酸循环以及氨基酸和脂质代谢。这些途径之间错综复杂的相互作用对于在不同细胞区建立先天性免疫记忆至关重要。我们特别探讨了常驻肺泡巨噬细胞的情况。我们提出,利用先天性免疫系统的记忆可能具有治疗潜力。具体来说,针对先天性免疫细胞的新陈代谢程序是一种新兴的临床干预策略,既能增强免疫抑制条件下的免疫反应,也能减轻高炎症性疾病中的不适应性激活。
{"title":"Metabolic Regulation in the Induction of Trained Immunity.","authors":"Anaisa V Ferreira, Jorge Domínguez-Andrés, Laura M Merlo Pich, Leo A B Joosten, Mihai G Netea","doi":"10.1007/s00281-024-01015-8","DOIUrl":"10.1007/s00281-024-01015-8","url":null,"abstract":"<p><p>The innate immune system exhibits features of memory, termed trained immunity, which promote faster and more robust responsiveness to heterologous challenges. Innate immune memory is sustained through epigenetic modifications, affecting gene accessibility, and promoting a tailored gene transcription for an enhanced immune response. Alterations in the epigenetic landscape are intertwined with metabolic rewiring. Here, we review the metabolic pathways that underscore the induction and maintenance of trained immunity, including glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, and amino acid and lipid metabolism. The intricate interplay of these pathways is pivotal for establishing innate immune memory in distinct cellular compartments. We explore in particular the case of resident lung alveolar macrophages. We propose that leveraging the memory of the innate immune system may present therapeutic potential. Specifically, targeting the metabolic programs of innate immune cells is an emerging strategy for clinical interventions, either to boost immune responses in immunosuppressed conditions or to mitigate maladaptive activation in hyperinflammatory diseases.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors. 利用肿瘤微环境,用工程淋巴细胞促进实体瘤的采纳 T 细胞疗法。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-25 DOI: 10.1007/s00281-024-01011-y
Martina Spiga, Elisa Martini, Maria Chiara Maffia, Fabio Ciceri, Eliana Ruggiero, Alessia Potenza, Chiara Bonini

Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.

使用嵌合抗原受体(CAR)和T细胞受体(TCR)工程T细胞的适应性细胞疗法(ACT)是治疗血液恶性肿瘤的一种创新治疗方法,但其在实体瘤中的应用仍不理想。肿瘤微环境(TME)是取得满意疗效需要克服的几个挑战,如物理障碍(纤维囊和基质)和阻碍 T 细胞功能的抑制信号。通过将 ACT 与化疗/放疗和检查点抑制剂等其他抗肿瘤方法相结合,可以克服其中的一些障碍。另一方面,尖端技术工具为克服这些障碍提供了机会,在某些情况下,还能利用 TME 的固有特性提高 ACT 的疗效。这些特征包括:利用趋化因子梯度和整合素表达来实现 T 细胞的优先归巢和外渗;通过增加抗原呈递和重塑 T 细胞表型,对 TCR-T 和 CAR-T 细胞产生直接或间接影响的新陈代谢变化;在 TCR-T 和 CAR-T 细胞上引入额外的合成受体,以提高 T 细胞的存活率和活力。
{"title":"Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors.","authors":"Martina Spiga, Elisa Martini, Maria Chiara Maffia, Fabio Ciceri, Eliana Ruggiero, Alessia Potenza, Chiara Bonini","doi":"10.1007/s00281-024-01011-y","DOIUrl":"10.1007/s00281-024-01011-y","url":null,"abstract":"<p><p>Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of galectins in the regulation of autophagy and inflammasome in host immunity. galectins 在宿主免疫中调控自噬和炎性体的作用。
IF 7.9 2区 医学 Q1 IMMUNOLOGY Pub Date : 2024-07-23 DOI: 10.1007/s00281-024-01018-5
Tzu-Han Lo, I-Chun Weng, Hung-Lin Chen, Fu-Tong Liu

Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.

聚糖结合蛋白家族中的 Galectins 可结合多种聚糖。在细胞质中,这些聚糖可能是内源性(或 "自身")的,来自受损的内细胞囊泡,也可能是外源性(或 "非自身")的,存在于入侵的微生物病原体表面。糖蛋白能检测到这些不寻常的糖类细胞膜暴露,并在先天性免疫和适应性免疫中充当协调免疫反应的关键调节因子。本综述概述了加连蛋白如何调节宿主细胞对感染的反应,如自噬、异噬和炎性体依赖性细胞死亡程序。
{"title":"The role of galectins in the regulation of autophagy and inflammasome in host immunity.","authors":"Tzu-Han Lo, I-Chun Weng, Hung-Lin Chen, Fu-Tong Liu","doi":"10.1007/s00281-024-01018-5","DOIUrl":"10.1007/s00281-024-01018-5","url":null,"abstract":"<p><p>Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or \"self\"), originating from damaged endocytic vesicles, or exogenous (or \"non-self\"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":null,"pages":null},"PeriodicalIF":7.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Seminars in Immunopathology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1