Ulysse Rançon, Timothée Masquelier, Benoit R Cottereau
{"title":"A general model unifying the adaptive, transient and sustained properties of ON and OFF auditory neural responses.","authors":"Ulysse Rançon, Timothée Masquelier, Benoit R Cottereau","doi":"10.1371/journal.pcbi.1012288","DOIUrl":null,"url":null,"abstract":"<p><p>Sounds are temporal stimuli decomposed into numerous elementary components by the auditory nervous system. For instance, a temporal to spectro-temporal transformation modelling the frequency decomposition performed by the cochlea is a widely adopted first processing step in today's computational models of auditory neural responses. Similarly, increments and decrements in sound intensity (i.e., of the raw waveform itself or of its spectral bands) constitute critical features of the neural code, with high behavioural significance. However, despite the growing attention of the scientific community on auditory OFF responses, their relationship with transient ON, sustained responses and adaptation remains unclear. In this context, we propose a new general model, based on a pair of linear filters, named AdapTrans, that captures both sustained and transient ON and OFF responses into a unifying and easy to expand framework. We demonstrate that filtering audio cochleagrams with AdapTrans permits to accurately render known properties of neural responses measured in different mammal species such as the dependence of OFF responses on the stimulus fall time and on the preceding sound duration. Furthermore, by integrating our framework into gold standard and state-of-the-art machine learning models that predict neural responses from audio stimuli, following a supervised training on a large compilation of electrophysiology datasets (ready-to-deploy PyTorch models and pre-processed datasets shared publicly), we show that AdapTrans systematically improves the prediction accuracy of estimated responses within different cortical areas of the rat and ferret auditory brain. Together, these results motivate the use of our framework for computational and systems neuroscientists willing to increase the plausibility and performances of their models of audition.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012288","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sounds are temporal stimuli decomposed into numerous elementary components by the auditory nervous system. For instance, a temporal to spectro-temporal transformation modelling the frequency decomposition performed by the cochlea is a widely adopted first processing step in today's computational models of auditory neural responses. Similarly, increments and decrements in sound intensity (i.e., of the raw waveform itself or of its spectral bands) constitute critical features of the neural code, with high behavioural significance. However, despite the growing attention of the scientific community on auditory OFF responses, their relationship with transient ON, sustained responses and adaptation remains unclear. In this context, we propose a new general model, based on a pair of linear filters, named AdapTrans, that captures both sustained and transient ON and OFF responses into a unifying and easy to expand framework. We demonstrate that filtering audio cochleagrams with AdapTrans permits to accurately render known properties of neural responses measured in different mammal species such as the dependence of OFF responses on the stimulus fall time and on the preceding sound duration. Furthermore, by integrating our framework into gold standard and state-of-the-art machine learning models that predict neural responses from audio stimuli, following a supervised training on a large compilation of electrophysiology datasets (ready-to-deploy PyTorch models and pre-processed datasets shared publicly), we show that AdapTrans systematically improves the prediction accuracy of estimated responses within different cortical areas of the rat and ferret auditory brain. Together, these results motivate the use of our framework for computational and systems neuroscientists willing to increase the plausibility and performances of their models of audition.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.