Structure-aware annotation of leucine-rich repeat domains.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-11-05 DOI:10.1371/journal.pcbi.1012526
Boyan Xu, Alois Cerbu, Christopher J Tralie, Daven Lim, Ksenia Krasileva
{"title":"Structure-aware annotation of leucine-rich repeat domains.","authors":"Boyan Xu, Alois Cerbu, Christopher J Tralie, Daven Lim, Ksenia Krasileva","doi":"10.1371/journal.pcbi.1012526","DOIUrl":null,"url":null,"abstract":"<p><p>Protein domain annotation is typically done by predictive models such as HMMs trained on sequence motifs. However, sequence-based annotation methods are prone to error, particularly in calling domain boundaries and motifs within them. These methods are limited by a lack of structural information accessible to the model. With the advent of deep learning-based protein structure prediction, existing sequenced-based domain annotation methods can be improved by taking into account the geometry of protein structures. We develop dimensionality reduction methods to annotate repeat units of the Leucine Rich Repeat solenoid domain. The methods are able to correct mistakes made by existing machine learning-based annotation tools and enable the automated detection of hairpin loops and structural anomalies in the solenoid. The methods are applied to 127 predicted structures of LRR-containing intracellular innate immune proteins in the model plant Arabidopsis thaliana and validated against a benchmark dataset of 172 manually-annotated LRR domains.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012526","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Protein domain annotation is typically done by predictive models such as HMMs trained on sequence motifs. However, sequence-based annotation methods are prone to error, particularly in calling domain boundaries and motifs within them. These methods are limited by a lack of structural information accessible to the model. With the advent of deep learning-based protein structure prediction, existing sequenced-based domain annotation methods can be improved by taking into account the geometry of protein structures. We develop dimensionality reduction methods to annotate repeat units of the Leucine Rich Repeat solenoid domain. The methods are able to correct mistakes made by existing machine learning-based annotation tools and enable the automated detection of hairpin loops and structural anomalies in the solenoid. The methods are applied to 127 predicted structures of LRR-containing intracellular innate immune proteins in the model plant Arabidopsis thaliana and validated against a benchmark dataset of 172 manually-annotated LRR domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富亮氨酸重复域的结构感知注释。
蛋白质结构域注释通常由预测模型完成,如根据序列主题训练的 HMM。然而,基于序列的注释方法很容易出错,尤其是在调用结构域边界和其中的主题时。这些方法受限于模型无法获取的结构信息。随着基于深度学习的蛋白质结构预测技术的出现,现有的基于序列的结构域标注方法可以通过考虑蛋白质结构的几何形状来加以改进。我们开发了降维方法来注释富亮氨酸重复螺线管结构域的重复单元。这些方法能够纠正现有的基于机器学习的注释工具所犯的错误,并能自动检测发夹环和螺线管结构异常。这些方法被应用于模式植物拟南芥中 127 个含 LRR 的细胞内先天性免疫蛋白的预测结构,并与 172 个人工标注 LRR 结构域的基准数据集进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
A computational analysis of the oncogenic and anti-tumor immunity role of P4HA3 in human cancers. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. During haptic communication, the central nervous system compensates distinctly for delay and noise. Structure-aware annotation of leucine-rich repeat domains. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1