Machine-learned interatomic potentials for transition metal dichalcogenide Mo1−xWxS2−2ySe2y alloys

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-08-03 DOI:10.1038/s41524-024-01357-9
Anas Siddiqui, Nicholas D. M. Hine
{"title":"Machine-learned interatomic potentials for transition metal dichalcogenide Mo1−xWxS2−2ySe2y alloys","authors":"Anas Siddiqui, Nicholas D. M. Hine","doi":"10.1038/s41524-024-01357-9","DOIUrl":null,"url":null,"abstract":"<p>Machine Learned Interatomic Potentials (MLIPs) combine the predictive power of Density Functional Theory (DFT) with the speed and scaling of interatomic potentials, enabling theoretical spectroscopy to be applied to larger and more complex systems than is possible with DFT. In this work, we train an MLIP for quaternary Transition Metal Dichalcogenide (TMD) alloy systems of the form Mo<sub>1−<i>x</i></sub>W<sub><i>x</i></sub>S<sub>2−2<i>y</i></sub>Se<sub>2<i>y</i></sub>, using the equivariant Neural Network (NN) MACE. We demonstrate the ability of this potential to calculate vibrational properties of alloy TMDs including phonon spectra for pure monolayers, and Vibrational Density of States (VDOS) and first-order Raman spectra for alloys across the range of <i>x</i> and <i>y</i>. We show that we retain DFT level accuracy while greatly extending feasible system size and extent of sampling over alloy configurations. We are able to characterize the first-order Raman active modes across the whole range of concentration, particularly for the “disorder-induced” modes.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"41 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01357-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine Learned Interatomic Potentials (MLIPs) combine the predictive power of Density Functional Theory (DFT) with the speed and scaling of interatomic potentials, enabling theoretical spectroscopy to be applied to larger and more complex systems than is possible with DFT. In this work, we train an MLIP for quaternary Transition Metal Dichalcogenide (TMD) alloy systems of the form Mo1−xWxS2−2ySe2y, using the equivariant Neural Network (NN) MACE. We demonstrate the ability of this potential to calculate vibrational properties of alloy TMDs including phonon spectra for pure monolayers, and Vibrational Density of States (VDOS) and first-order Raman spectra for alloys across the range of x and y. We show that we retain DFT level accuracy while greatly extending feasible system size and extent of sampling over alloy configurations. We are able to characterize the first-order Raman active modes across the whole range of concentration, particularly for the “disorder-induced” modes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习的二卤化过渡金属 Mo1-xWxS2-2ySe2y 合金原子间电位
机器学习原子间位势(MLIPs)将密度泛函理论(DFT)的预测能力与原子间位势的速度和规模相结合,使理论光谱学能够应用于比 DFT 更大、更复杂的系统。在这项工作中,我们利用等变神经网络 (NN) MACE,为 Mo1-xWxS2-2ySe2y 形式的四元过渡金属二钙化物 (TMD) 合金系统训练了一个 MLIP。我们展示了这种势能计算合金 TMD 振动特性的能力,包括纯单层的声子光谱,以及 x 和 y 范围内合金的振动状态密度 (VDOS) 和一阶拉曼光谱。我们能够描述整个浓度范围内的一阶拉曼活性模式,尤其是 "无序诱导 "模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Deep learning potential model of displacement damage in hafnium oxide ferroelectric films Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1