首页 > 最新文献

npj Computational Materials最新文献

英文 中文
Graph atomic cluster expansion for foundational machine learning interatomic potentials 基础机器学习原子间势的图原子簇展开
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-08 DOI: 10.1038/s41524-026-01979-1
Yury Lysogorskiy, Anton Bochkarev, Ralf Drautz
Foundational machine learning interatomic potentials that can accurately and efficiently model a vast range of materials are critical for accelerating atomistic discovery. We introduce universal potentials based on the graph atomic cluster expansion (GRACE) framework, trained on several of the largest available materials datasets. Through comprehensive benchmarks, we demonstrate that the GRACE models establish a new Pareto front for accuracy versus efficiency among foundational interatomic potentials. We further showcase their exceptional versatility by adapting them to specialized tasks and simpler architectures via fine-tuning and knowledge distillation, achieving high accuracy while preventing catastrophic forgetting. This work establishes GRACE as a robust and adaptable foundation for the next generation of atomistic modeling, enabling high-fidelity simulations across the periodic table.
基础机器学习原子间势可以准确有效地模拟大量材料,这对于加速原子发现至关重要。我们引入了基于图原子簇展开(GRACE)框架的通用势,该框架在几个最大的可用材料数据集上进行了训练。通过全面的基准测试,我们证明GRACE模型在基本原子间势的准确性与效率之间建立了一个新的帕累托前沿。通过微调和知识提炼,我们进一步展示了它们卓越的多功能性,使它们适应专门的任务和更简单的架构,在实现高精度的同时防止灾难性的遗忘。这项工作建立了GRACE作为下一代原子建模的强大和适应性基础,实现了跨元素周期表的高保真模拟。
{"title":"Graph atomic cluster expansion for foundational machine learning interatomic potentials","authors":"Yury Lysogorskiy, Anton Bochkarev, Ralf Drautz","doi":"10.1038/s41524-026-01979-1","DOIUrl":"https://doi.org/10.1038/s41524-026-01979-1","url":null,"abstract":"Foundational machine learning interatomic potentials that can accurately and efficiently model a vast range of materials are critical for accelerating atomistic discovery. We introduce universal potentials based on the graph atomic cluster expansion (GRACE) framework, trained on several of the largest available materials datasets. Through comprehensive benchmarks, we demonstrate that the GRACE models establish a new Pareto front for accuracy versus efficiency among foundational interatomic potentials. We further showcase their exceptional versatility by adapting them to specialized tasks and simpler architectures via fine-tuning and knowledge distillation, achieving high accuracy while preventing catastrophic forgetting. This work establishes GRACE as a robust and adaptable foundation for the next generation of atomistic modeling, enabling high-fidelity simulations across the periodic table.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promising ferroelectric metal EuAuBi with switchable giant shift current 具有可切换大位移电流的有前途的铁电金属EuAuBi
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1038/s41524-026-01990-6
Guangrong Tan, Jinyu Zou, Gang Xu
{"title":"Promising ferroelectric metal EuAuBi with switchable giant shift current","authors":"Guangrong Tan, Jinyu Zou, Gang Xu","doi":"10.1038/s41524-026-01990-6","DOIUrl":"https://doi.org/10.1038/s41524-026-01990-6","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"132 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Layer-dependent and gate-tunable Chern numbers in 2D kagome ferromagnet Yb2(C6H4)3 with a large band gap 具有大带隙的二维kagome铁磁体Yb2(C6H4)3的层依赖和栅极可调谐陈氏数
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1038/s41524-026-01991-5
Jiaxuan Guo, Simin Nie, Fritz B. Prinz
{"title":"Layer-dependent and gate-tunable Chern numbers in 2D kagome ferromagnet Yb2(C6H4)3 with a large band gap","authors":"Jiaxuan Guo, Simin Nie, Fritz B. Prinz","doi":"10.1038/s41524-026-01991-5","DOIUrl":"https://doi.org/10.1038/s41524-026-01991-5","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"94 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical properties of a diamond NV color center from capped embedded multiconfigurational correlated wavefunction theory 钻石NV色心光学性质的顶嵌多构型相关波函数理论
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1038/s41524-026-01987-1
John Mark P. Martirez
{"title":"Optical properties of a diamond NV color center from capped embedded multiconfigurational correlated wavefunction theory","authors":"John Mark P. Martirez","doi":"10.1038/s41524-026-01987-1","DOIUrl":"https://doi.org/10.1038/s41524-026-01987-1","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"312 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient and accurate spatial mixing of machine learned interatomic potentials for materials science 材料科学中高效准确的机器学习原子间势空间混合
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1038/s41524-026-01982-6
Fraser Birks, Matthew Nutter, Thomas D. Swinburne, James R. Kermode
Machine-learned interatomic potentials can offer near first-principles accuracy but are computationally expensive, limiting their application to large-scale molecular dynamics simulations. Inspired by quantum mechanics/molecular mechanics methods, we present ML-MIX, a CPU- and GPU-compatible package to accelerate simulations by spatially mixing interatomic potentials of different complexities, allowing deployment of modern MLIPs even under restricted computational budgets. We demonstrate our method for ACE, UF3, SNAP and MACE potential architectures and demonstrate how linear ‘cheap’ potentials can be distilled from a given ‘expensive’ potential, allowing close matching in relevant regions of configuration space. The functionality of ML-MIX is demonstrated through tests on point defects in Si, Fe and W-He, in which speedups of up to 11× over ~8000 atoms are demonstrated, without sacrificing accuracy. The scientific potential of ML-MIX is demonstrated via two case studies in W, measuring the mobility of $$b=frac{1}{2}langle 111rangle$$ b = 1 2 111 screw dislocations with ACE/ACE mixing and the implantation of He with MACE/SNAP mixing. The latter returns He reflection coefficients which (for the first time) match experimental observations up to an He incident energy of 80 eV—demonstrating the benefits of deploying state-of-the-art models on large, realistic systems.
机器学习的原子间势可以提供接近第一性原理的精度,但计算成本很高,限制了它们在大规模分子动力学模拟中的应用。受量子力学/分子力学方法的启发,我们提出了ML-MIX,一个CPU和gpu兼容的包,通过空间混合不同复杂性的原子间势来加速模拟,即使在有限的计算预算下也允许部署现代mlip。我们展示了我们的ACE, UF3, SNAP和MACE潜在架构的方法,并展示了如何从给定的“昂贵”潜力中提取线性“便宜”潜力,从而允许在配置空间的相关区域进行密切匹配。ML-MIX的功能通过对Si, Fe和W-He的点缺陷进行测试来证明,其中在不牺牲精度的情况下,在8000个原子上的加速高达11倍。ML-MIX的科学潜力通过W的两个案例研究得到证明,分别是测量ACE/ACE混合下$$b=frac{1}{2}langle 111rangle$$ b = 1 2 < 111 >螺钉位错的迁移率和MACE/SNAP混合下He的植入。后者返回的He反射系数(第一次)与实验观测结果相匹配,达到80 ev的He入射能量,这表明在大型现实系统上部署最先进的模型的好处。
{"title":"Efficient and accurate spatial mixing of machine learned interatomic potentials for materials science","authors":"Fraser Birks, Matthew Nutter, Thomas D. Swinburne, James R. Kermode","doi":"10.1038/s41524-026-01982-6","DOIUrl":"https://doi.org/10.1038/s41524-026-01982-6","url":null,"abstract":"Machine-learned interatomic potentials can offer near first-principles accuracy but are computationally expensive, limiting their application to large-scale molecular dynamics simulations. Inspired by quantum mechanics/molecular mechanics methods, we present ML-MIX, a CPU- and GPU-compatible package to accelerate simulations by spatially mixing interatomic potentials of different complexities, allowing deployment of modern MLIPs even under restricted computational budgets. We demonstrate our method for ACE, UF3, SNAP and MACE potential architectures and demonstrate how linear ‘cheap’ potentials can be distilled from a given ‘expensive’ potential, allowing close matching in relevant regions of configuration space. The functionality of ML-MIX is demonstrated through tests on point defects in Si, Fe and W-He, in which speedups of up to 11× over ~8000 atoms are demonstrated, without sacrificing accuracy. The scientific potential of ML-MIX is demonstrated via two case studies in W, measuring the mobility of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$$b=frac{1}{2}langle 111rangle$$</jats:tex-math> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:mfrac> <mml:mo>〈</mml:mo> <mml:mn>111</mml:mn> <mml:mo>〉</mml:mo> </mml:mrow> </mml:math> </jats:alternatives> </jats:inline-formula> screw dislocations with ACE/ACE mixing and the implantation of He with MACE/SNAP mixing. The latter returns He reflection coefficients which (for the first time) match experimental observations up to an He incident energy of 80 eV—demonstrating the benefits of deploying state-of-the-art models on large, realistic systems.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"59 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general optimization framework for mapping local transition-state networks 局部过渡状态网络映射的通用优化框架
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-06 DOI: 10.1038/s41524-026-01985-3
Qichen Xu, Anna Delin
Understanding how complex systems transition between states requires mapping the energy landscape that governs these changes. Local transition-state networks reveal the barrier architecture that explains observed behaviour and enables mechanism-based prediction across computational chemistry, biology, and physics, yet in many practical settings current approaches either require pre-specified endpoints or rely on single-ended searches that provide only a limited sample of nearby saddles. We present a general optimization framework that systematically expands local coverage by coupling a multi-objective explorer with a bilayer minimum-mode kernel. The inner layer uses Hessian-vector products to recover the lowest-curvature subspace, the outer layer optimizes on a reflected force to reach index-1 saddles, then a two-sided descent certifies connectivity. The GPU-based pipeline is portable across autodiff backends and eigensolvers and, on large atomistic-spin tests, matches explicit-Hessian accuracy while cutting peak memory and wall time by orders of magnitude. Applied to a DFT-parameterized Néel-type skyrmionic model, it recovers known routes and reveals previously unreported mechanisms, including meron-antimeron-mediated Néel-type skyrmionic duplication, annihilation, and chiral-droplet formation, enabling up to 32 pathways between biskyrmion ( Q = 2) and biantiskyrmion ( Q = −2). The same core transfers to Cartesian atoms, automatically mapping canonical rearrangements of a Ni(111) heptamer, underscoring the framework’s generality.
了解复杂系统如何在状态之间转换需要绘制控制这些变化的能源景观。局部过渡状态网络揭示了屏障结构,解释了观察到的行为,并实现了跨计算化学、生物学和物理学的基于机制的预测,然而在许多实际设置中,当前的方法要么需要预先指定的端点,要么依赖于只提供附近鞍点有限样本的单端搜索。我们提出了一个通用的优化框架,该框架通过将多目标搜索器与双层最小模核相耦合来系统地扩展局部覆盖。内层使用hessian矢量积恢复最低曲率子空间,外层优化反射力以达到索引-1鞍,然后双向下降证明连通性。基于gpu的流水线可以在autodiff后端和特征解算器之间移植,并且在大型原子自旋测试中,匹配显式hessian精度,同时将峰值内存和壁时间降低了几个数量级。应用于dft参数化的nsamel -type skyrmionic模型,它恢复了已知的途径并揭示了以前未报道的机制,包括介子-反介子介导的nsamel -type skyrmionic复制、湮灭和手性液滴的形成,在双kyrmiion (Q = 2)和双antiskrmiion (Q = - 2)之间实现了多达32种途径。同样的核心转移到笛卡尔原子上,自动映射Ni(111)七聚体的规范重排,强调了框架的普遍性。
{"title":"A general optimization framework for mapping local transition-state networks","authors":"Qichen Xu, Anna Delin","doi":"10.1038/s41524-026-01985-3","DOIUrl":"https://doi.org/10.1038/s41524-026-01985-3","url":null,"abstract":"Understanding how complex systems transition between states requires mapping the energy landscape that governs these changes. Local transition-state networks reveal the barrier architecture that explains observed behaviour and enables mechanism-based prediction across computational chemistry, biology, and physics, yet in many practical settings current approaches either require pre-specified endpoints or rely on single-ended searches that provide only a limited sample of nearby saddles. We present a general optimization framework that systematically expands local coverage by coupling a multi-objective explorer with a bilayer minimum-mode kernel. The inner layer uses Hessian-vector products to recover the lowest-curvature subspace, the outer layer optimizes on a reflected force to reach index-1 saddles, then a two-sided descent certifies connectivity. The GPU-based pipeline is portable across autodiff backends and eigensolvers and, on large atomistic-spin tests, matches explicit-Hessian accuracy while cutting peak memory and wall time by orders of magnitude. Applied to a DFT-parameterized Néel-type skyrmionic model, it recovers known routes and reveals previously unreported mechanisms, including meron-antimeron-mediated Néel-type skyrmionic duplication, annihilation, and chiral-droplet formation, enabling up to 32 pathways between biskyrmion ( <jats:italic>Q</jats:italic> = 2) and biantiskyrmion ( <jats:italic>Q</jats:italic> = −2). The same core transfers to Cartesian atoms, automatically mapping canonical rearrangements of a Ni(111) heptamer, underscoring the framework’s generality.","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mumax+: extensible GPU-accelerated micromagnetics and beyond mumax+:可扩展的gpu加速微磁和超越
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-025-01893-y
Lars Moreels, Ian Lateur, Diego De Gusem, Jeroen Mulkers, Jonathan Maes, Milorad V. Milošević, Jonathan Leliaert, Bartel Van Waeyenberge
{"title":"mumax+: extensible GPU-accelerated micromagnetics and beyond","authors":"Lars Moreels, Ian Lateur, Diego De Gusem, Jeroen Mulkers, Jonathan Maes, Milorad V. Milošević, Jonathan Leliaert, Bartel Van Waeyenberge","doi":"10.1038/s41524-025-01893-y","DOIUrl":"https://doi.org/10.1038/s41524-025-01893-y","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"9 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomistic understanding of hydrogen bubble-induced embrittlement in tungsten enabled by machine learning molecular dynamics 通过机器学习分子动力学实现对氢气泡致钨脆的原子理解
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-026-01986-2
Yu Bao, Keke Song, Jiahui Liu, Yanzhou Wang, Yifei Ning, Penghua Ying, Ping Qian
{"title":"Atomistic understanding of hydrogen bubble-induced embrittlement in tungsten enabled by machine learning molecular dynamics","authors":"Yu Bao, Keke Song, Jiahui Liu, Yanzhou Wang, Yifei Ning, Penghua Ying, Ping Qian","doi":"10.1038/s41524-026-01986-2","DOIUrl":"https://doi.org/10.1038/s41524-026-01986-2","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"48 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational design of materials for nuclear reactors 核反应堆材料的计算设计
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-026-01980-8
Michael R. Tonks, David A. Andersson, Assel Aitkaliyeva
{"title":"Computational design of materials for nuclear reactors","authors":"Michael R. Tonks, David A. Andersson, Assel Aitkaliyeva","doi":"10.1038/s41524-026-01980-8","DOIUrl":"https://doi.org/10.1038/s41524-026-01980-8","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"240 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AIMATDESIGN: knowledge-augmented reinforcement learning for inverse materials design under data scarcity AIMATDESIGN:数据稀缺条件下逆向材料设计的知识增强强化学习
IF 9.7 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Pub Date : 2026-02-05 DOI: 10.1038/s41524-025-01894-x
Yeyong Yu, Xilei Bian, Jie Xiong, Xing Wu, Quan Qian
{"title":"AIMATDESIGN: knowledge-augmented reinforcement learning for inverse materials design under data scarcity","authors":"Yeyong Yu, Xilei Bian, Jie Xiong, Xing Wu, Quan Qian","doi":"10.1038/s41524-025-01894-x","DOIUrl":"https://doi.org/10.1038/s41524-025-01894-x","url":null,"abstract":"","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"16 1","pages":""},"PeriodicalIF":9.7,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146135595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
npj Computational Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1