Decadal Variations in Equatorial Ellipticity and Principal Axis of the Earth from Satellite Laser Ranging/GRACE

IF 4.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Surveys in Geophysics Pub Date : 2024-08-03 DOI:10.1007/s10712-024-09852-w
Minkang Cheng
{"title":"Decadal Variations in Equatorial Ellipticity and Principal Axis of the Earth from Satellite Laser Ranging/GRACE","authors":"Minkang Cheng","doi":"10.1007/s10712-024-09852-w","DOIUrl":null,"url":null,"abstract":"<div><p>The Earth exhibits an equatorial flattening specified by the ellipticity and the east longitude (or orientation) of the equatorial major axis, which is uniquely determined by the degree 2 and order 2 gravitational coefficients, <i>C</i><sub>22</sub> and <i>S</i><sub>22</sub>. The 31-year SLR (satellite laser ranging) and 22-year GRACE/GRACE-FO (gravity recovery and climate experiment) data are analyzed to study the climate-related secular and 5.7 years to decadal variations in <i>C</i><sub>22</sub> and <i>S</i><sub>22</sub>, in turn, the drift and decadal variation in the Earth’s equatorial ellipticity and orientation of the principal axis of the least moment of inertia. The effects of the surface floating mass changes (including atmosphere, ocean and surface water redistribution and the melting of the mountain and polar glaciers) and the interior fluid convective (Earth’s core flows) were evaluated. Results reveal that the equatorial ellipticity of the Earth is linearly increasing along with a remarkable decadal variation and the Earth’s equator is flattening by ~ 0.16 mm/yr.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 5","pages":"1601 - 1626"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-024-09852-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Earth exhibits an equatorial flattening specified by the ellipticity and the east longitude (or orientation) of the equatorial major axis, which is uniquely determined by the degree 2 and order 2 gravitational coefficients, C22 and S22. The 31-year SLR (satellite laser ranging) and 22-year GRACE/GRACE-FO (gravity recovery and climate experiment) data are analyzed to study the climate-related secular and 5.7 years to decadal variations in C22 and S22, in turn, the drift and decadal variation in the Earth’s equatorial ellipticity and orientation of the principal axis of the least moment of inertia. The effects of the surface floating mass changes (including atmosphere, ocean and surface water redistribution and the melting of the mountain and polar glaciers) and the interior fluid convective (Earth’s core flows) were evaluated. Results reveal that the equatorial ellipticity of the Earth is linearly increasing along with a remarkable decadal variation and the Earth’s equator is flattening by ~ 0.16 mm/yr.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从卫星激光测距/GRACE 看地球赤道椭圆度和主轴的十年变化
地球呈现出一种赤道扁平化现象,由赤道主轴的椭圆度和东经(或方位)决定,而赤道主轴的椭圆度和东经(或方位)则由度数 2 和阶数 2 重力系数 C22 和 S22 唯一决定。通过分析 31 年的卫星激光测距(SLR)和 22 年的重力恢复和气候实验(GRACE/GRACE-FO)数据,研究了与气候相关的 C22 和 S22 的世代变化和 5.7 年至十年的变化,进而研究了地球赤道椭圆度和最小惯性矩主轴方向的漂移和十年变化。对地表浮动质量变化(包括大气、海洋和地表水的重新分布以及高山和极地冰川的融化)和内部流体对流(地核流动)的影响进行了评估。结果显示,地球赤道椭圆度呈线性上升趋势,并有显著的十年变化,地球赤道以 ~ 0.16 毫米/年的速度变平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surveys in Geophysics
Surveys in Geophysics 地学-地球化学与地球物理
CiteScore
10.00
自引率
10.90%
发文量
64
审稿时长
4.5 months
期刊介绍: Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.
期刊最新文献
Recent Advances in Machine Learning-Enhanced Joint Inversion of Seismic and Electromagnetic Data Extreme Events Contributing to Tipping Elements and Tipping Points Opportunities for Earth Observation to Inform Risk Management for Ocean Tipping Points A Multi-satellite Perspective on “Hot Tower” Characteristics in the Equatorial Trough Zone An Abrupt Decline in Global Terrestrial Water Storage and Its Relationship with Sea Level Change
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1