Localization and segmentation of atomic columns in supported nanoparticles for fast scanning transmission electron microscopy

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-08-03 DOI:10.1038/s41524-024-01360-0
Henrik Eliasson, Rolf Erni
{"title":"Localization and segmentation of atomic columns in supported nanoparticles for fast scanning transmission electron microscopy","authors":"Henrik Eliasson, Rolf Erni","doi":"10.1038/s41524-024-01360-0","DOIUrl":null,"url":null,"abstract":"<p>To accurately capture the dynamic behavior of small nanoparticles in scanning transmission electron microscopy, high-quality data and advanced data processing is needed. The fast scan rate required to observe structural dynamics inherently leads to very noisy data where machine learning tools are essential for unbiased analysis. In this study, we develop a workflow based on two U-Net architectures to automatically localize and classify atomic columns at particle-support interfaces. The model is trained on non-physical image simulations, achieves sub-pixel localization precision, high classification accuracy, and generalizes well to experimental data. We test our model on both in situ and ex situ experimental time series recorded at 5 frames per second of small Pt nanoparticles supported on CeO<sub>2</sub>(111). The processed movies show sub-second dynamics of the nanoparticles and reveal site-specific movement patterns of individual atomic columns.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"35 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01360-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To accurately capture the dynamic behavior of small nanoparticles in scanning transmission electron microscopy, high-quality data and advanced data processing is needed. The fast scan rate required to observe structural dynamics inherently leads to very noisy data where machine learning tools are essential for unbiased analysis. In this study, we develop a workflow based on two U-Net architectures to automatically localize and classify atomic columns at particle-support interfaces. The model is trained on non-physical image simulations, achieves sub-pixel localization precision, high classification accuracy, and generalizes well to experimental data. We test our model on both in situ and ex situ experimental time series recorded at 5 frames per second of small Pt nanoparticles supported on CeO2(111). The processed movies show sub-second dynamics of the nanoparticles and reveal site-specific movement patterns of individual atomic columns.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于快速扫描透射电子显微镜的支撑纳米粒子中原子柱的定位和分割
要在扫描透射电子显微镜中准确捕捉小型纳米粒子的动态行为,需要高质量的数据和先进的数据处理技术。观察结构动态所需的快速扫描速率本身就会导致数据非常嘈杂,因此机器学习工具对于进行无偏分析至关重要。在这项研究中,我们开发了一种基于两种 U-Net 架构的工作流程,用于自动定位和分类粒子支撑界面上的原子柱。该模型在非物理图像模拟上进行了训练,实现了亚像素级的定位精度和较高的分类准确性,并能很好地泛化到实验数据中。我们在以每秒 5 帧的速度记录的小铂纳米粒子在 CeO2(111) 上的原位和非原位实验时间序列上测试了我们的模型。处理后的影片显示了纳米粒子的亚秒级动态,并揭示了单个原子柱的特定位点运动模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
Thermodynamics of solids including anharmonicity through quasiparticle theory Neural network potential for dislocation plasticity in ceramics Exhaustive search for novel multicomponent alloys with brute force and machine learning A Ring2Vec description method enables accurate predictions of molecular properties in organic solar cells Dielectric tensor prediction for inorganic materials using latent information from preferred potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1