Li1.3Al0.3Ti1.7P3O12 activated PVDF solid electrolyte for advanced lithium–oxygen batteries

IF 10.7 Q1 CHEMISTRY, PHYSICAL EcoMat Pub Date : 2024-07-31 DOI:10.1002/eom2.12481
Caizheng Ou, Hao Zhang, Dan Ma, Hailiang Mu, Xiangqun Zhuge, Yurong Ren, Maryam Bayati, Ben Bin Xu, Xiaoteng Liu, Xiaoqin Zou, Kun Luo
{"title":"Li1.3Al0.3Ti1.7P3O12 activated PVDF solid electrolyte for advanced lithium–oxygen batteries","authors":"Caizheng Ou,&nbsp;Hao Zhang,&nbsp;Dan Ma,&nbsp;Hailiang Mu,&nbsp;Xiangqun Zhuge,&nbsp;Yurong Ren,&nbsp;Maryam Bayati,&nbsp;Ben Bin Xu,&nbsp;Xiaoteng Liu,&nbsp;Xiaoqin Zou,&nbsp;Kun Luo","doi":"10.1002/eom2.12481","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion composite solid electrolyte membranes embedded with Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>P<sub>3</sub>O<sub>12</sub> and poly(vinylidene fluoride) are prepared using a facile casting method. Furthermore, we added LiI as an active agent for decomposing the anode product. The synergy resulted in a high conductivity of 7.4 mS·cm<sup>−1</sup> and lithium-ion mobility of 0.59 and a reduction of the overpotential to 0.86 V for lithium–oxygen batteries (LOBs). The membrane has enhanced Young's modulus of 6.6 GPa that effectively blocked the lithium dendrite growth during the battery operation and puncturing to the membrane led to a significant LOB cycle life of 542 cycles. Meanwhile, Li|Li symmetrical battery overpotential maintained at 42 mV after 470 h of operation.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12481","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion composite solid electrolyte membranes embedded with Li1.3Al0.3Ti1.7P3O12 and poly(vinylidene fluoride) are prepared using a facile casting method. Furthermore, we added LiI as an active agent for decomposing the anode product. The synergy resulted in a high conductivity of 7.4 mS·cm−1 and lithium-ion mobility of 0.59 and a reduction of the overpotential to 0.86 V for lithium–oxygen batteries (LOBs). The membrane has enhanced Young's modulus of 6.6 GPa that effectively blocked the lithium dendrite growth during the battery operation and puncturing to the membrane led to a significant LOB cycle life of 542 cycles. Meanwhile, Li|Li symmetrical battery overpotential maintained at 42 mV after 470 h of operation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于先进锂-氧电池的 Li1.3Al0.3Ti1.7P3O12 活性 PVDF 固体电解质
我们采用简便的浇铸法制备了嵌入 Li1.3Al0.3Ti1.7P3O12 和聚(偏氟乙烯)的锂离子复合固体电解质膜。此外,我们还添加了 LiI 作为分解阳极产物的活性剂。通过协同作用,锂氧电池(LOB)的电导率达到 7.4 mS-cm-1,锂离子迁移率达到 0.59,过电位降低到 0.86 V。膜的杨氏模量提高到 6.6 GPa,可有效阻止电池运行过程中锂枝晶的生长,穿刺膜可使锂氧电池的循环寿命达到 542 次。同时,锂锂对称电池的过电位在运行 470 小时后保持在 42 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Cover Image Issue Information Lanthanides in the water electrolysis Double transition metal MXenes for enhanced electrochemical applications: Challenges and opportunities Addressing electrode passivation in lithium–sulfur batteries by site-selective morphology-controlled Li2S formation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1