Daniel Bujosa Mateu;Julian Proenza;Alessandro V. Papadopoulos;Thomas Nolte;Mohammad Ashjaei
{"title":"TALESS: TSN With Legacy End-Stations Synchronization","authors":"Daniel Bujosa Mateu;Julian Proenza;Alessandro V. Papadopoulos;Thomas Nolte;Mohammad Ashjaei","doi":"10.1109/OJIES.2024.3436590","DOIUrl":null,"url":null,"abstract":"In order to facilitate the adoption of Time Sensitive Networking (TSN) by the industry, it is necessary to develop tools to integrate legacy systems with TSN. In this article, we propose a solution for the coexistence of different time domains from different legacy systems, each with its corresponding synchronization protocol, in a single TSN network. To this end, we experimentally identified the effects of replacing the communications subsystem of a legacy Ethernet-based network with TSN in terms of synchronization. Based on the results, we propose a solution called TALESS (TSN with Legacy End-Stations Synchronization). TALESS can identify the drift between the TSN communications subsystem and the integrated legacy devices (end-stations) and then modify the TSN schedule to adapt to the different time domains to avoid the effects of the lack of synchronization between them. We validate TALESS through both simulations and experiments on a prototype. We demonstrate that thanks to TALESS, legacy systems can synchronize through TSN and even improve features such as their reception jitter or their integrability with other legacy systems.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"807-822"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620612","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10620612/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In order to facilitate the adoption of Time Sensitive Networking (TSN) by the industry, it is necessary to develop tools to integrate legacy systems with TSN. In this article, we propose a solution for the coexistence of different time domains from different legacy systems, each with its corresponding synchronization protocol, in a single TSN network. To this end, we experimentally identified the effects of replacing the communications subsystem of a legacy Ethernet-based network with TSN in terms of synchronization. Based on the results, we propose a solution called TALESS (TSN with Legacy End-Stations Synchronization). TALESS can identify the drift between the TSN communications subsystem and the integrated legacy devices (end-stations) and then modify the TSN schedule to adapt to the different time domains to avoid the effects of the lack of synchronization between them. We validate TALESS through both simulations and experiments on a prototype. We demonstrate that thanks to TALESS, legacy systems can synchronize through TSN and even improve features such as their reception jitter or their integrability with other legacy systems.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.