Md. Masuduzzaman;Tariq Rahim;Anik Islam;Soo Young Shin
{"title":"UAV-Employed Intelligent Approach to Identify Injured Soldier on Blockchain-Integrated Internet of Battlefield Things","authors":"Md. Masuduzzaman;Tariq Rahim;Anik Islam;Soo Young Shin","doi":"10.1109/TNSM.2024.3436674","DOIUrl":null,"url":null,"abstract":"This study proposes an intelligent approach to identifying an injured soldier on blockchain-integrated Internet-of-Battlefield Things (IoBT) employing unmanned aerial vehicles (UAVs). The intelligent approach combines a unique deep learning (DL) model with a smartwatch-based heart-rate (HR) data collection technique. Different activation functions (i.e., MISH and Leaky rectified linear unit) are used in the proposed DL model to enhance the identification task by extracting the in-depth features from the images. Furthermore, a smart-watch-based HR data analyzing technique is introduced to confirm the injury of a soldier. However, due to the UAV’s low battery capacity, the identification task is offloaded to the neighboring edge computing server to improve system performance. Moreover, to restrict the access of registered IoT devices (e.g., UAV, smartwatch, etc.) and protect the sensitive data leakage on IoBT, a blockchain-integrated access control (ACL) mechanism is utilized. Detailed experimental results are provided for the proposed DL model that outperforms existing DL models. Besides, implementing a smartwatch-based HR data analysis technique for the soldiers improves the outcome of the proposed DL model. To provide a fine-grained data protection mechanism in the proposed system, a private blockchain-based ACL management policy is constructed utilizing hyperledger, and various assessment metrics have been scrutinized.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"21 5","pages":"5197-5214"},"PeriodicalIF":4.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10620231/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an intelligent approach to identifying an injured soldier on blockchain-integrated Internet-of-Battlefield Things (IoBT) employing unmanned aerial vehicles (UAVs). The intelligent approach combines a unique deep learning (DL) model with a smartwatch-based heart-rate (HR) data collection technique. Different activation functions (i.e., MISH and Leaky rectified linear unit) are used in the proposed DL model to enhance the identification task by extracting the in-depth features from the images. Furthermore, a smart-watch-based HR data analyzing technique is introduced to confirm the injury of a soldier. However, due to the UAV’s low battery capacity, the identification task is offloaded to the neighboring edge computing server to improve system performance. Moreover, to restrict the access of registered IoT devices (e.g., UAV, smartwatch, etc.) and protect the sensitive data leakage on IoBT, a blockchain-integrated access control (ACL) mechanism is utilized. Detailed experimental results are provided for the proposed DL model that outperforms existing DL models. Besides, implementing a smartwatch-based HR data analysis technique for the soldiers improves the outcome of the proposed DL model. To provide a fine-grained data protection mechanism in the proposed system, a private blockchain-based ACL management policy is constructed utilizing hyperledger, and various assessment metrics have been scrutinized.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.