{"title":"Role of Prior Cyclic Oxidation on Tensile Deformation Behaviour of IN 713 C Alloy","authors":"R. K. Rai, Sharat Chandra, N. Paulose","doi":"10.1007/s12540-024-01755-0","DOIUrl":null,"url":null,"abstract":"<p>Tensile test specimens fabricated out of IN 713 C alloy were subjected to cyclic oxidation at 850 <sup>o</sup>C in the air for 500 h, and their tensile properties were evaluated at 650 and 750 °C. Cyclic oxidation exposure has been noted to induce degradation in the alloy’s tensile properties, resulting in decreased strength and ductility. The deterioration in the alloy’s tensile behavior is linked to both surface damage and microstructural degradation caused by cyclic oxidation. Additionally, coarsening of γ′-precipitates during tensile testing contributes to the observed effects.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"42 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12540-024-01755-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tensile test specimens fabricated out of IN 713 C alloy were subjected to cyclic oxidation at 850 oC in the air for 500 h, and their tensile properties were evaluated at 650 and 750 °C. Cyclic oxidation exposure has been noted to induce degradation in the alloy’s tensile properties, resulting in decreased strength and ductility. The deterioration in the alloy’s tensile behavior is linked to both surface damage and microstructural degradation caused by cyclic oxidation. Additionally, coarsening of γ′-precipitates during tensile testing contributes to the observed effects.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.