Influence of Aluminum Pillar Nanostructures on Thin‐Film Organic Solar Cells

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Physica Status Solidi A-applications and Materials Science Pub Date : 2024-08-02 DOI:10.1002/pssa.202400221
Apichat Phengdaam, Nonthanan Sitpathom, Minghui Hong, Kazunari Shinbo, Keizo Kato, Akira Baba
{"title":"Influence of Aluminum Pillar Nanostructures on Thin‐Film Organic Solar Cells","authors":"Apichat Phengdaam, Nonthanan Sitpathom, Minghui Hong, Kazunari Shinbo, Keizo Kato, Akira Baba","doi":"10.1002/pssa.202400221","DOIUrl":null,"url":null,"abstract":"This study explores the application of pillar nanostructures in organic solar cells (OSCs). The aluminum pillar nanostructures (AlPNSs) are fabricated on an active layer surface comprising of a blend poly(3‐hexylthiophene‐2,5‐diyl) and [6,6]‐phenyl C61 butyric acid methyl ester using nanoimprinting. Aluminum back electrodes are formed, resulting in AlPNSs with an imprinted pattern height of 60 ± 6 nm and a pitch of 212 ± 49 nm. Atomic force microscope images and current density versus voltage curves are obtained for the fabricated devices, both with and without AlPNSs. The results indicate a solar cell efficiency increase of 15.16% in the AlPNS OSCs compared to the reference cells. To investigate the role of AlPNSs in the enhancement, impedance spectroscopy, incident photon‐to‐current efficiency, UV–Vis reflection spectroscopy, and finite‐difference time‐domain simulations are performed for the both devices. The results demonstrate that the combination of propagating surface plasmon resonance and light‐trapping properties due to AlPNSs significantly enhances the overall optical performance. This research provides new insights into the potential of imprinted nanostructures for enhancing OSC performance, including their plasmonic and optical characteristics.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"215 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400221","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the application of pillar nanostructures in organic solar cells (OSCs). The aluminum pillar nanostructures (AlPNSs) are fabricated on an active layer surface comprising of a blend poly(3‐hexylthiophene‐2,5‐diyl) and [6,6]‐phenyl C61 butyric acid methyl ester using nanoimprinting. Aluminum back electrodes are formed, resulting in AlPNSs with an imprinted pattern height of 60 ± 6 nm and a pitch of 212 ± 49 nm. Atomic force microscope images and current density versus voltage curves are obtained for the fabricated devices, both with and without AlPNSs. The results indicate a solar cell efficiency increase of 15.16% in the AlPNS OSCs compared to the reference cells. To investigate the role of AlPNSs in the enhancement, impedance spectroscopy, incident photon‐to‐current efficiency, UV–Vis reflection spectroscopy, and finite‐difference time‐domain simulations are performed for the both devices. The results demonstrate that the combination of propagating surface plasmon resonance and light‐trapping properties due to AlPNSs significantly enhances the overall optical performance. This research provides new insights into the potential of imprinted nanostructures for enhancing OSC performance, including their plasmonic and optical characteristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铝柱纳米结构对薄膜有机太阳能电池的影响
本研究探讨了柱状纳米结构在有机太阳能电池(OSC)中的应用。利用纳米压印技术,在聚(3-己基噻吩-2,5-二基)和[6,6]-苯基 C61 丁酸甲酯混合物组成的活性层表面制造了铝柱纳米结构(AlPNS)。形成铝背电极后,AlPNS 的压印图案高度为 60 ± 6 nm,间距为 212 ± 49 nm。在有 AlPNS 和没有 AlPNS 的情况下,都能获得所制造器件的原子力显微镜图像和电流密度与电压的关系曲线。结果表明,与参考电池相比,AlPNS OSC 太阳能电池的效率提高了 15.16%。为了研究 AlPNS 在提高效率中的作用,对这两种器件都进行了阻抗光谱分析、入射光子到电流效率分析、紫外-可见反射光谱分析和有限差分时域模拟。结果表明,传播表面等离子体共振与 AlPNSs 的光捕获特性相结合,显著提高了整体光学性能。这项研究为印迹纳米结构提高 OSC 性能(包括其等离子和光学特性)的潜力提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
5.00%
发文量
393
审稿时长
2 months
期刊介绍: The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.
期刊最新文献
Plasma‐Assisted Preparation and Properties of Chitosan‐Based Magnetic Hydrogels Performance Enhancement of SnS Solar Cell with Tungsten Disulfide Electron Transport Layer and Molybdenum Trioxide Hole Transport Layer Advancements in Piezoelectric‐Enabled Devices for Optical Communication Structural Distortions and Short‐Range Magnetism in a Honeycomb Iridate Cu3ZnIr2O6 Enhancing Reliability and Regeneration of Single Passivated Emitter Rear Contact Solar Cell Modules through Alternating Current Power Application to Mitigate Light and Elevated Temperature‐Induced Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1