{"title":"Ytterbium-doping contribution to the overall dielectric and electrical properties of (Sr, Ba)Bi2Ta2O9 ceramics","authors":"Mohamed Afqir, Didier Fasquelle, Amina Tachafine, Yingzhi Meng, Mohamed ElaatmanI, Abdelouahad Zegzouti, Mohamed Daoud","doi":"10.1007/s41779-024-01068-w","DOIUrl":null,"url":null,"abstract":"<p>In this work, Yb-doped Sr<sub>0.95</sub>Ba<sub>0.05</sub>Bi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> powders were synthesized by the citric acid-assisted method. The prepared powders were uniaxially pressed and sintered at different temperatures. Structure, morphology, and dielectric properties were investigated. The use of either a 1200 °C sintering temperature or motifs for a reduction tanδ purpose. The results showed that Yb has not caused a significant change in dielectric properties at low temperatures, thus indicating its ability to reduce dielectric loss smoothly. At high temperatures, the introduction of ytterbium elements could reduce both Curie temperature and conductivity. According to Jonscher’s universal power law, the correlated barrier-hopping (CBH) model describes the AC conductivity mechanism. However, the non-overlapping small polaron tunneling (NSPT) model may be used to show that this is only possible at a specific temperature. The Arrhenius law and the CBH module provide estimates of the various energy barriers that space charges should overcome; however, these barriers get higher as the dopant concentration rises.</p>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"188 5 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s41779-024-01068-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, Yb-doped Sr0.95Ba0.05Bi2Ta2O9 powders were synthesized by the citric acid-assisted method. The prepared powders were uniaxially pressed and sintered at different temperatures. Structure, morphology, and dielectric properties were investigated. The use of either a 1200 °C sintering temperature or motifs for a reduction tanδ purpose. The results showed that Yb has not caused a significant change in dielectric properties at low temperatures, thus indicating its ability to reduce dielectric loss smoothly. At high temperatures, the introduction of ytterbium elements could reduce both Curie temperature and conductivity. According to Jonscher’s universal power law, the correlated barrier-hopping (CBH) model describes the AC conductivity mechanism. However, the non-overlapping small polaron tunneling (NSPT) model may be used to show that this is only possible at a specific temperature. The Arrhenius law and the CBH module provide estimates of the various energy barriers that space charges should overcome; however, these barriers get higher as the dopant concentration rises.
期刊介绍:
Publishes high quality research and technical papers in all areas of ceramic and related materials
Spans the broad and growing fields of ceramic technology, material science and bioceramics
Chronicles new advances in ceramic materials, manufacturing processes and applications
Journal of the Australian Ceramic Society since 1965
Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted