{"title":"One year of warming leads to the total loss of productivity in a widespread photosymbiosis","authors":"B. Makin, C. D. Lowe","doi":"10.3354/ab00769","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Photosymbioses, in which photosynthetic microorganisms reside within heterotrophic hosts, are important components of aquatic ecosystems and are under threat from environmental warming. The immediate ecological consequences of acute warming for archetypal photosymbioses, such as those between corals and zooxanthellae, are well documented. In contrast, understanding of the evolutionary responses of photosymbioses to persistent warming remains limited and direct observations of evolution in response to warming are scarce, as many associations are slow-evolving and do not enable observations on a tractable timescale. To address this knowledge gap, we exposed the widespread microbial <i>Paramecium bursaria-Chlorella </i>spp. photosymbiosis to 295 d of continuous growth under +5°°C of persistent warming. We subsequently quantified the thermal responses of traits associated with symbiosis persistence and ecological function (growth rate, symbiont density [the number of symbionts within hosts], and metabolic rates) compared with cultures maintained at ambient temperature and cultures exposed to -5°°C of cooling for the same time period. Strikingly, while growth rate thermal optimum increased with warming, net photosynthesis and carbon-use efficiency (the proportion of photosynthetic carbon available for growth) both strongly declined to zero. These data suggest a significant change in ecological function with persistent warming. We also detected larger autonomous symbiont populations following 295 d of warming, and symbionts from the warm-adapted symbiosis demonstrated a ‘switch’ from exclusive growth on organic to inorganic nitrogen, suggesting that symbionts could have evolved increased autonomy from hosts. Thus, warming could erode the ecological function and promote symbiont autonomy in photosymbiosis over evolutionary timescales.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/ab00769","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT: Photosymbioses, in which photosynthetic microorganisms reside within heterotrophic hosts, are important components of aquatic ecosystems and are under threat from environmental warming. The immediate ecological consequences of acute warming for archetypal photosymbioses, such as those between corals and zooxanthellae, are well documented. In contrast, understanding of the evolutionary responses of photosymbioses to persistent warming remains limited and direct observations of evolution in response to warming are scarce, as many associations are slow-evolving and do not enable observations on a tractable timescale. To address this knowledge gap, we exposed the widespread microbial Paramecium bursaria-Chlorella spp. photosymbiosis to 295 d of continuous growth under +5°°C of persistent warming. We subsequently quantified the thermal responses of traits associated with symbiosis persistence and ecological function (growth rate, symbiont density [the number of symbionts within hosts], and metabolic rates) compared with cultures maintained at ambient temperature and cultures exposed to -5°°C of cooling for the same time period. Strikingly, while growth rate thermal optimum increased with warming, net photosynthesis and carbon-use efficiency (the proportion of photosynthetic carbon available for growth) both strongly declined to zero. These data suggest a significant change in ecological function with persistent warming. We also detected larger autonomous symbiont populations following 295 d of warming, and symbionts from the warm-adapted symbiosis demonstrated a ‘switch’ from exclusive growth on organic to inorganic nitrogen, suggesting that symbionts could have evolved increased autonomy from hosts. Thus, warming could erode the ecological function and promote symbiont autonomy in photosymbiosis over evolutionary timescales.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms