Improved Stability of BEOL-Compatible Highly Scaled Ultrathin InZnO Channel Ferroelectric Thin-Film Transistor With TiO₂ Interfacial Layer

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-01 DOI:10.1109/TED.2024.3433835
Yan-Kui Liang;Wei-Li Li;Yu-Lon Lin;Dong-Ru Hsieh;Tsung-Ying Yang;Tsung-Te Chou;Chi-Chung Kei;Huai-Ying Huang;Yu-Ming Lin;Yuan-Chieh Tseng;Tien-Sheng Chao;Edward Yi Chang;Kasidit Toprasertpong;Shinichi Takagi;Chun-Hsiung Lin
{"title":"Improved Stability of BEOL-Compatible Highly Scaled Ultrathin InZnO Channel Ferroelectric Thin-Film Transistor With TiO₂ Interfacial Layer","authors":"Yan-Kui Liang;Wei-Li Li;Yu-Lon Lin;Dong-Ru Hsieh;Tsung-Ying Yang;Tsung-Te Chou;Chi-Chung Kei;Huai-Ying Huang;Yu-Ming Lin;Yuan-Chieh Tseng;Tien-Sheng Chao;Edward Yi Chang;Kasidit Toprasertpong;Shinichi Takagi;Chun-Hsiung Lin","doi":"10.1109/TED.2024.3433835","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the impact of inserting an interfacial layer (IL) between the InZnO channel and ZrO2/HfO2 superlattice (SL) ferroelectric (FE) gate-stack on the performance and stability of highly scaled FE thin-film transistors (FeTFTs). FeTFTs with various channel lengths (50–750 nm) were characterized to reveal the impact of two IL (i.e., TiO2 and Al2O3) on device characteristics. All the memory window (MW) contours of FeTFTs with a pulsewidth of 1 ms–100 ns and an amplitude of 2.5–5 V have been investigated. The FeTFT with TiO2 IL demonstrated impressive stability in MW (\n<inline-formula> <tex-math>$\\boldsymbol {\\Delta } $ </tex-math></inline-formula>\n MW/MW\n<inline-formula> <tex-math>$_{{1}\\text {st cy}\\text {cle}}~\\boldsymbol {\\le } ~3.6$ </tex-math></inline-formula>\n%) up to 108 cycles for a program/erase voltage of \n<inline-formula> <tex-math>$\\boldsymbol {\\pm }3$ </tex-math></inline-formula>\n V and pulsewidth of \n<inline-formula> <tex-math>$1~\\boldsymbol {\\mu } $ </tex-math></inline-formula>\n s. It was suggested that the FeTFT with a higher dielectric constant \n<inline-formula> <tex-math>$(k)$ </tex-math></inline-formula>\n TiO2 IL may reduce the electrical field and depolarization field at the interface between the channel and gate dielectric, as well as improve interfacial quality, thereby enhancing the reliability of FeTFTs.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10620072/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigated the impact of inserting an interfacial layer (IL) between the InZnO channel and ZrO2/HfO2 superlattice (SL) ferroelectric (FE) gate-stack on the performance and stability of highly scaled FE thin-film transistors (FeTFTs). FeTFTs with various channel lengths (50–750 nm) were characterized to reveal the impact of two IL (i.e., TiO2 and Al2O3) on device characteristics. All the memory window (MW) contours of FeTFTs with a pulsewidth of 1 ms–100 ns and an amplitude of 2.5–5 V have been investigated. The FeTFT with TiO2 IL demonstrated impressive stability in MW ( $\boldsymbol {\Delta } $ MW/MW $_{{1}\text {st cy}\text {cle}}~\boldsymbol {\le } ~3.6$ %) up to 108 cycles for a program/erase voltage of $\boldsymbol {\pm }3$ V and pulsewidth of $1~\boldsymbol {\mu } $ s. It was suggested that the FeTFT with a higher dielectric constant $(k)$ TiO2 IL may reduce the electrical field and depolarization field at the interface between the channel and gate dielectric, as well as improve interfacial quality, thereby enhancing the reliability of FeTFTs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有 TiO$_{\text{2}}$ 表面层的 BEOL 兼容型高比例超薄 InZnO 沟道铁电薄膜晶体管稳定性的提高
在这项研究中,我们研究了在 InZnO 沟道和 ZrO2/HfO2 超晶格 (SL) 铁电 (FE) 栅极栈之间插入界面层 (IL) 对高比例 FE 薄膜晶体管 (FeTFT) 性能和稳定性的影响。我们对具有不同沟道长度(50-750 nm)的 FeTFT 进行了表征,以揭示两种 IL(即 TiO2 和 Al2O3)对器件特性的影响。研究了脉宽为 1 ms-100 ns、振幅为 2.5-5 V 的 FeTFT 的所有存储窗口 (MW) 轮廓。带有 TiO2 IL 的 FeTFT 在 MW($\boldsymbol {\Delta })中表现出了令人印象深刻的稳定性。$ MW/MW $_{{1}\text {st cy}\text {cle}}~\boldsymbol {\le }~3.6$ %)达 108 个周期,程序/擦除电压为 $\boldsymbol {\pm }3$ V,脉宽为 1~\boldsymbol {\mu }$ s。研究表明,具有更高介电常数 $(k)$ TiO2 IL 的 FeTFT 可以降低沟道和栅电介质界面的电场和去极化场,并改善界面质量,从而提高 FeTFT 的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents Special Issue on Intelligent Sensor Systems for the IEEE Journal of Electron Devices Corrections to “Electron Emission Regimes of Planar Nano Vacuum Emitters” IEEE Open Access Publishing IEEE ELECTRON DEVICES SOCIETY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1