首页 > 最新文献

IEEE Transactions on Electron Devices最新文献

英文 中文
IEEE Transactions on Electron Devices Information for Authors IEEE电子器件信息汇刊
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-30 DOI: 10.1109/TED.2026.3654316
{"title":"IEEE Transactions on Electron Devices Information for Authors","authors":"","doi":"10.1109/TED.2026.3654316","DOIUrl":"https://doi.org/10.1109/TED.2026.3654316","url":null,"abstract":"","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"73 2","pages":"C3-C3"},"PeriodicalIF":3.2,"publicationDate":"2026-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11369827","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative DRAM Cell Featuring a Vertical Junctionless Pillar Access Transistor With a High Work-Function Molybdenum Nitride Metal Gate for Enhanced Performance and Efficiency 创新的DRAM单元采用垂直无结柱接入晶体管,具有高工作功能的氮化钼金属栅极,可提高性能和效率
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-12 DOI: 10.1109/TED.2025.3638315
Deyuan Xiao;Yi Jiang;Yunsong Qiu;Yuhong Zheng;Daohuan Feng;Chen Yang;Minrui Hu;Guoming Huang;Qinghua Han;Xiang Liu;Kai Shao;Jianfeng Xiao;Jian Chu;Di Ma;Dongsheng Xie;Jinying Liu;Tingting Gu;Xian Zou;Xu Peng;Meng Hao;Zengchao Song;Chao Zhao;Alex See;Kanyu Cao
In this work, we demonstrate an innovative dynamic random access memory (DRAM) cell design featuring a vertical junctionless pillar access transistor with a high work-function (WF) molybdenum nitride (MoN) metal gate, enabling enhanced performance and efficiency. By depositing MoN over the gate dielectric at temperatures below $600~^{circ}$ C, we achieved a wrapped-gate transistor array with significantly improved electrical characteristics. Compared to conventional titanium nitride (TiN) gates, the MoN gate exhibits a 0.22-V positive shift in flat-band voltage (VFB) to −0.38 V and a 35% increase in threshold voltage ( ${V}_{text {th}}text {)}$ to 0.35 V while maintaining identical on-state current (7.6 $boldsymbol {mu }$ A/cell) and subthreshold swing (SS) (82.3 mV/dec). These advancements address critical challenges in DRAM scaling, including leakage reduction and noise immunity, without compromising device performance. The MoN gate’s superior WF ( $boldsymbol {Phi }_{text {m}}text {)}$ enables enhanced depletion in the n-type doped channel, ensuring stable operation at 3.3 V with a projected lifetime exceeding ten years. This study establishes MoN as a promising gate material for high-performance vertical junctionless pillar transistors, offering a scalable solution for next-generation 1T1C DRAM architectures.
在这项工作中,我们展示了一种创新的动态随机存取存储器(DRAM)单元设计,其特点是具有高工作功能(WF)氮化钼(MoN)金属栅极的垂直无结柱存取晶体管,从而提高了性能和效率。通过在低于$600~^{circ}$ C的温度下将MoN沉积在栅极电介质上,我们实现了具有显着改善电气特性的封装栅极晶体管阵列。与传统的氮化钛(TiN)栅极相比,MoN栅极的平带电压(VFB)为- 0.38 V,正位移为0.22 V% increase in threshold voltage ( ${V}_{text {th}}text {)}$ to 0.35 V while maintaining identical on-state current (7.6 $boldsymbol {mu }$ A/cell) and subthreshold swing (SS) (82.3 mV/dec). These advancements address critical challenges in DRAM scaling, including leakage reduction and noise immunity, without compromising device performance. The MoN gate’s superior WF ( $boldsymbol {Phi }_{text {m}}text {)}$ enables enhanced depletion in the n-type doped channel, ensuring stable operation at 3.3 V with a projected lifetime exceeding ten years. This study establishes MoN as a promising gate material for high-performance vertical junctionless pillar transistors, offering a scalable solution for next-generation 1T1C DRAM architectures.
{"title":"Innovative DRAM Cell Featuring a Vertical Junctionless Pillar Access Transistor With a High Work-Function Molybdenum Nitride Metal Gate for Enhanced Performance and Efficiency","authors":"Deyuan Xiao;Yi Jiang;Yunsong Qiu;Yuhong Zheng;Daohuan Feng;Chen Yang;Minrui Hu;Guoming Huang;Qinghua Han;Xiang Liu;Kai Shao;Jianfeng Xiao;Jian Chu;Di Ma;Dongsheng Xie;Jinying Liu;Tingting Gu;Xian Zou;Xu Peng;Meng Hao;Zengchao Song;Chao Zhao;Alex See;Kanyu Cao","doi":"10.1109/TED.2025.3638315","DOIUrl":"https://doi.org/10.1109/TED.2025.3638315","url":null,"abstract":"In this work, we demonstrate an innovative dynamic random access memory (DRAM) cell design featuring a vertical junctionless pillar access transistor with a high work-function (WF) molybdenum nitride (MoN) metal gate, enabling enhanced performance and efficiency. By depositing MoN over the gate dielectric at temperatures below <inline-formula> <tex-math>$600~^{circ}$ </tex-math></inline-formula>C, we achieved a wrapped-gate transistor array with significantly improved electrical characteristics. Compared to conventional titanium nitride (TiN) gates, the MoN gate exhibits a 0.22-V positive shift in flat-band voltage (VFB) to −0.38 V and a 35% increase in threshold voltage (<inline-formula> <tex-math>${V}_{text {th}}text {)}$ </tex-math></inline-formula> to 0.35 V while maintaining identical <sc>on</small>-state current (7.6 <inline-formula> <tex-math>$boldsymbol {mu }$ </tex-math></inline-formula>A/cell) and subthreshold swing (SS) (82.3 mV/dec). These advancements address critical challenges in DRAM scaling, including leakage reduction and noise immunity, without compromising device performance. The MoN gate’s superior WF (<inline-formula> <tex-math>$boldsymbol {Phi }_{text {m}}text {)}$ </tex-math></inline-formula> enables enhanced depletion in the n-type doped channel, ensuring stable operation at 3.3 V with a projected lifetime exceeding ten years. This study establishes MoN as a promising gate material for high-performance vertical junctionless pillar transistors, offering a scalable solution for next-generation 1T1C DRAM architectures.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"73 2","pages":"1069-1073"},"PeriodicalIF":3.2,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieving Sub-1 nm EOT and Enhanced Performance in Monolayer WSe2 FETs via Optimized AlN/HfO2 Dielectrics 通过优化AlN/HfO2介电体实现亚1nm EOT并增强单层WSe2 fet的性能
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-12 DOI: 10.1109/TED.2025.3648338
Jia-Hao Chih;Yu-Che Huang;Po-Heng Pao;Chao-Hsin Chien
Dual-gate (DG) WSe2 field-effect transistors (FETs) offer superior electrostatic control and scaling potential compared to conventional back-gate (BG) devices, yet their practical implementation remains limited by the challenge of integrating ultrathin, high-quality gate dielectrics without damaging the 2-D channel. This work presents a CMOS-compatible, low-temperature ( $100 ^{circ }$ C) plasma-enhanced atomic layer deposition (PE-ALD) strategy employing aluminum nitride (AlN) as an interface-nucleation layer, followed by thermally grown hafnium dioxide (TH-HfO ${}_{{2}}text {)}$ , to realize a top-gate dielectric stack with an equivalent oxide thickness (EOT) below 1 nm. Optimizing the AlN deposition power to 100 W yields the smoothest surface, lowest roughness, and best crystallinity, as confirmed by Raman spectroscopy, atomic force microscopy, and X-ray diffraction (XRD). Electrical characterization under DG operation demonstrates excellent gate modulation, reduced hysteresis, and enhanced drive current, with the 100-W condition achieving the highest drain current of $4.66,times, 10^{-{5}}$ A/ $mu $ m post-deposition annealing. These results highlight a scalable, low-power pathway for integrating high-performance dielectrics with 2-D semiconductors, enabling future nanoelectronic and optoelectronic applications.
与传统的后栅(BG)器件相比,双栅(DG) WSe2场效应晶体管(fet)具有优越的静电控制和缩放潜力,但其实际实施仍然受到集成超薄、高质量栅极电介质而不损坏二维通道的挑战的限制。本工作提出了一种cmos兼容的低温($100 ^{circ}$ C)等离子体增强原子层沉积(PE-ALD)策略,采用氮化铝(AlN)作为界面成核层,然后是热生长的二氧化铪(TH-HfO ${}_{{2}}text{)}$,以实现等效氧化物厚度(EOT)低于1 nm的顶栅介电堆栈。通过拉曼光谱、原子力显微镜和x射线衍射(XRD)证实,将AlN沉积功率优化到100 W可以获得最光滑的表面、最低的粗糙度和最佳的结晶度。DG操作下的电特性表现出优异的栅极调制,降低了迟滞,增强了驱动电流,在100-W条件下,沉积退火后的最高漏极电流为$4.66,times, 10^{-{5}}$ A/ $mu $ m。这些结果强调了将高性能电介质与二维半导体集成的可扩展、低功耗途径,使未来的纳米电子和光电子应用成为可能。
{"title":"Achieving Sub-1 nm EOT and Enhanced Performance in Monolayer WSe2 FETs via Optimized AlN/HfO2 Dielectrics","authors":"Jia-Hao Chih;Yu-Che Huang;Po-Heng Pao;Chao-Hsin Chien","doi":"10.1109/TED.2025.3648338","DOIUrl":"https://doi.org/10.1109/TED.2025.3648338","url":null,"abstract":"Dual-gate (DG) WSe<sub>2</sub> field-effect transistors (FETs) offer superior electrostatic control and scaling potential compared to conventional back-gate (BG) devices, yet their practical implementation remains limited by the challenge of integrating ultrathin, high-quality gate dielectrics without damaging the 2-D channel. This work presents a CMOS-compatible, low-temperature (<inline-formula> <tex-math>$100 ^{circ }$ </tex-math></inline-formula>C) plasma-enhanced atomic layer deposition (PE-ALD) strategy employing aluminum nitride (AlN) as an interface-nucleation layer, followed by thermally grown hafnium dioxide (TH-HfO<inline-formula> <tex-math>${}_{{2}}text {)}$ </tex-math></inline-formula>, to realize a top-gate dielectric stack with an equivalent oxide thickness (EOT) below 1 nm. Optimizing the AlN deposition power to 100 W yields the smoothest surface, lowest roughness, and best crystallinity, as confirmed by Raman spectroscopy, atomic force microscopy, and X-ray diffraction (XRD). Electrical characterization under DG operation demonstrates excellent gate modulation, reduced hysteresis, and enhanced drive current, with the 100-W condition achieving the highest drain current of <inline-formula> <tex-math>$4.66,times, 10^{-{5}}$ </tex-math></inline-formula> A/<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m post-deposition annealing. These results highlight a scalable, low-power pathway for integrating high-performance dielectrics with 2-D semiconductors, enabling future nanoelectronic and optoelectronic applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"73 2","pages":"1063-1068"},"PeriodicalIF":3.2,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Electron Devices Information for Authors IEEE电子器件信息汇刊
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-09 DOI: 10.1109/TED.2025.3644260
{"title":"IEEE Transactions on Electron Devices Information for Authors","authors":"","doi":"10.1109/TED.2025.3644260","DOIUrl":"https://doi.org/10.1109/TED.2025.3644260","url":null,"abstract":"","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"73 1","pages":"C3-C3"},"PeriodicalIF":3.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11344062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145929649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Assessment of Homochiral Carbon Nanotube van der Waals Crystal Transistors 同手性碳纳米管范德华晶体晶体管的性能评价
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2026-01-02 DOI: 10.1109/TED.2025.3647409
Qimao Yang;Jing Guo
Self-consistent dissipative quantum transport and ab initio density-functional theory (DFT) simulations are used to assess the performance potential of homochiral carbon nanotube (CNT) van der Waals (vdW) crystal FETs. At a gate length required for the upcoming technology nodes, the CNT vdW crystal FETs have a significant performance advantage over both the silicon and monolayer MoS2 FETs for high-performance transistor applications. The high packing density of the homochiral CNTs in the CNT vdW crystal boosts the current per channel width, and the interaction between CNTs at the vdW distance only has a small impact on the band structure, which maintains high band-structure-limited velocity and light effective mass. The homochiral CNT vdW crystal FET can achieve a predicted on-current of $sim {2700}{,}mu text {A}/mu text {m}$ at an off-current of $sim !{10}^{-2}{,}mu text {A}/mu text {m}$ and a power supply voltage of ${V}_{text {DD}}={0}.{4}{,}text {V}$ at a gate length of ${12}{,}text {nm}$ . As the gate length is further scaled down below ${10}{,}text {nm}$ , the CNT vdW crystal FETs, however, suffer from significantly degraded subthreshold swing and large leakage current due to pronounced quantum tunneling effects, while monolayer MoS2 has a better performance than both the CNT vdW crystal and silicon FETs at a gate length of ${6}{,}text {nm}$ . For RF applications, the CNT vdW crystal FET outperforms both the silicon and monolayer MoS2 FETs in the presence of parasitic capacitance due to its larger carrier velocity and transconductance per channel width.
采用自洽耗散量子输运和从头算密度泛函理论(DFT)模拟来评估同手性碳纳米管(CNT)范德华(vdW)晶体场效应管(fet)的性能潜力。在即将到来的技术节点所需的栅极长度上,碳纳米管vdW晶体fet在高性能晶体管应用中比硅和单层MoS2 fet具有显着的性能优势。单手性碳纳米管在纳米管vdW晶体中的高填充密度提高了每通道宽度的电流,并且在vdW距离上碳纳米管之间的相互作用对能带结构的影响很小,从而保持了高能带结构限制速度和轻有效质量。同手性碳纳米管vdW晶体场效应管可以在关断电流为$sim !{10}^{-2}{,}mu text {A}/mu text {m}$时实现预测导通电流为$sim {2700}{,}mu text {A}/mu text {m}$,在闸长为${12}{,}text {nm}$时实现预测电源电压为${V}_{text {DD}}={0}.{4}{,}text {V}$。当栅极长度进一步缩小到${10}{,}text {nm}$以下时,由于明显的量子隧穿效应,碳纳米管vdW晶体fet的亚阈值摆幅明显下降,漏电流大,而在栅极长度为${6}{,}text {nm}$时,单层MoS2的性能优于碳纳米管vdW晶体和硅fet。对于射频应用,碳纳米管vdW晶体FET在寄生电容存在下优于硅和单层MoS2 FET,因为它具有更大的载流子速度和每通道宽度的跨导性。
{"title":"Performance Assessment of Homochiral Carbon Nanotube van der Waals Crystal Transistors","authors":"Qimao Yang;Jing Guo","doi":"10.1109/TED.2025.3647409","DOIUrl":"https://doi.org/10.1109/TED.2025.3647409","url":null,"abstract":"Self-consistent dissipative quantum transport and ab initio density-functional theory (DFT) simulations are used to assess the performance potential of homochiral carbon nanotube (CNT) van der Waals (vdW) crystal FETs. At a gate length required for the upcoming technology nodes, the CNT vdW crystal FETs have a significant performance advantage over both the silicon and monolayer MoS<sub>2</sub> FETs for high-performance transistor applications. The high packing density of the homochiral CNTs in the CNT vdW crystal boosts the current per channel width, and the interaction between CNTs at the vdW distance only has a small impact on the band structure, which maintains high band-structure-limited velocity and light effective mass. The homochiral CNT vdW crystal FET can achieve a predicted on-current of <inline-formula> <tex-math>$sim {2700}{,}mu text {A}/mu text {m}$ </tex-math></inline-formula> at an off-current of <inline-formula> <tex-math>$sim !{10}^{-2}{,}mu text {A}/mu text {m}$ </tex-math></inline-formula> and a power supply voltage of <inline-formula> <tex-math>${V}_{text {DD}}={0}.{4}{,}text {V}$ </tex-math></inline-formula> at a gate length of <inline-formula> <tex-math>${12}{,}text {nm}$ </tex-math></inline-formula>. As the gate length is further scaled down below <inline-formula> <tex-math>${10}{,}text {nm}$ </tex-math></inline-formula>, the CNT vdW crystal FETs, however, suffer from significantly degraded subthreshold swing and large leakage current due to pronounced quantum tunneling effects, while monolayer MoS<sub>2</sub> has a better performance than both the CNT vdW crystal and silicon FETs at a gate length of <inline-formula> <tex-math>${6}{,}text {nm}$ </tex-math></inline-formula>. For RF applications, the CNT vdW crystal FET outperforms both the silicon and monolayer MoS<sub>2</sub> FETs in the presence of parasitic capacitance due to its larger carrier velocity and transconductance per channel width.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"73 2","pages":"1056-1062"},"PeriodicalIF":3.2,"publicationDate":"2026-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Reliable Oxide TFT-Based DC-Type Scan Driver With Separated Pull-Down and Holding Functions in Displays 高可靠的氧化物tft为基础的dc型扫描驱动程序与分离的下拉和保持功能在显示器
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-30 DOI: 10.1109/TED.2025.3646145
Minjae Jeong;Min Seong Kim;Ki Taeg Shin;Wongyun Youn;Hoon Jeong;Hyun Jae Kim
A structural improvement is introduced to the direct current (dc)-type scan driver to address the electrical limitations and long-term bias stress characteristics of oxide thin-film transistors (TFTs). This modification improves output falling speed and reliability. In conventional oxide TFT-based scan drivers, prolonged positive gate bias can cause threshold voltage shifts. By functionally separating the pull-down (PD) and low-level holding (LLH) paths in the conventional dc-type scan driver, the proposed circuit enhances driving capability and reduces the stress duty cycle under continuous positive bias from over 99% to below 1%. The experimental measurements confirm that the falling time is reduced from 2.1 to 1.4 μs. Furthermore, the SmartSPICE simulations incorporating threshold voltage shifts predict that after one year of operation, the falling time of a conventional scan driver increases to 9.9 μs, whereas the proposed driver shows a modest increase to 1.9 μs.
为了解决氧化薄膜晶体管(TFTs)的电限制和长期偏置应力特性,对直流(dc)型扫描驱动器进行了结构改进。这种修改提高了输出下降的速度和可靠性。在传统的基于氧化物tft的扫描驱动器中,长时间的正栅极偏置会导致阈值电压偏移。通过在功能上分离传统直流型扫描驱动器中的下拉(PD)和低电平保持(LLH)路径,该电路增强了驱动能力,并将连续正偏压下的应力占空比从99%以上降低到1%以下。实验测量证实,下降时间由2.1 μs缩短到1.4 μs。此外,结合阈值电压漂移的SmartSPICE模拟预测,在工作一年后,传统扫描驱动器的下降时间增加到9.9 μs,而所提出的驱动器显示出适度的增加到1.9 μs。
{"title":"Highly Reliable Oxide TFT-Based DC-Type Scan Driver With Separated Pull-Down and Holding Functions in Displays","authors":"Minjae Jeong;Min Seong Kim;Ki Taeg Shin;Wongyun Youn;Hoon Jeong;Hyun Jae Kim","doi":"10.1109/TED.2025.3646145","DOIUrl":"https://doi.org/10.1109/TED.2025.3646145","url":null,"abstract":"A structural improvement is introduced to the direct current (dc)-type scan driver to address the electrical limitations and long-term bias stress characteristics of oxide thin-film transistors (TFTs). This modification improves output falling speed and reliability. In conventional oxide TFT-based scan drivers, prolonged positive gate bias can cause threshold voltage shifts. By functionally separating the pull-down (PD) and low-level holding (LLH) paths in the conventional dc-type scan driver, the proposed circuit enhances driving capability and reduces the stress duty cycle under continuous positive bias from over 99% to below 1%. The experimental measurements confirm that the falling time is reduced from 2.1 to 1.4 μs. Furthermore, the SmartSPICE simulations incorporating threshold voltage shifts predict that after one year of operation, the falling time of a conventional scan driver increases to 9.9 μs, whereas the proposed driver shows a modest increase to 1.9 μs.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"73 2","pages":"1074-1078"},"PeriodicalIF":3.2,"publicationDate":"2025-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High-Efficiency Microwave Power Combining System Based on a Tuned H–T Waveguide Tee 基于调谐H-T波导三通的高效微波功率组合系统
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-22 DOI: 10.1109/TED.2025.3643405
Dayang Wang;Jianlong Liu;Kongyi Hu;Zhijianmucuo Dong;Zheng Yang;Feifan Ma;Zhong Wang;Baoqing Zeng
This brief presents a system for high-efficiency S-band magnetron microwave power combining based on the mutual synchronization mechanism (peer-to-peer locking mechanism) between magnetrons, which effectively addresses the issues of low efficiency and complex architecture in the existing magnetron microwave combining systems. The system is simplified through a modification of the H–T waveguide tee by introducing multiple tuning pins to control the coupling coefficient precisely. This modification achieves tunable coupling strength and mutual frequency pulling and locking. It leverages the intrinsic coupling characteristics of microwave signals between magnetrons and ensures stable interlocking. Moreover, it significantly simplifies the combining system and eliminates the need for circulators or phase shifters. Additionally, a fixed-length (or tunable) straight waveguide is added to fine-tune the phase difference between the two magnetrons, thereby maximizing the combining efficiency to approximately 99% in experiments. The high combining efficiency is maintained once the combining system is established. The combining efficiency remains above 95% even when different magnetrons are alternated. These results highlight its potential as a high-efficiency solution for magnetron microwave combining applications and industrial-scale use.
摘要提出了一种基于磁控管相互同步机制(点对点锁定机制)的s波段高效磁控管微波功率组合系统,有效地解决了现有磁控管微波组合系统效率低、结构复杂的问题。通过对H-T波导三通管进行改进,引入多个调谐引脚来精确控制耦合系数,从而简化了系统。这种修改实现了可调的耦合强度和互频拉锁。它利用微波信号在磁控管之间的固有耦合特性,确保稳定的联锁。此外,它大大简化了组合系统,消除了对环行器或移相器的需要。此外,增加了一个固定长度(或可调谐)的直波导来微调两个磁控管之间的相位差,从而在实验中将组合效率最大化到约99%。一旦建立了配种制度,就能保持较高的配种效率。不同磁控管交替使用时,结合效率仍保持在95%以上。这些结果突出了它作为磁控管微波结合应用和工业规模使用的高效解决方案的潜力。
{"title":"A High-Efficiency Microwave Power Combining System Based on a Tuned H–T Waveguide Tee","authors":"Dayang Wang;Jianlong Liu;Kongyi Hu;Zhijianmucuo Dong;Zheng Yang;Feifan Ma;Zhong Wang;Baoqing Zeng","doi":"10.1109/TED.2025.3643405","DOIUrl":"https://doi.org/10.1109/TED.2025.3643405","url":null,"abstract":"This brief presents a system for high-efficiency S-band magnetron microwave power combining based on the mutual synchronization mechanism (peer-to-peer locking mechanism) between magnetrons, which effectively addresses the issues of low efficiency and complex architecture in the existing magnetron microwave combining systems. The system is simplified through a modification of the H–T waveguide tee by introducing multiple tuning pins to control the coupling coefficient precisely. This modification achieves tunable coupling strength and mutual frequency pulling and locking. It leverages the intrinsic coupling characteristics of microwave signals between magnetrons and ensures stable interlocking. Moreover, it significantly simplifies the combining system and eliminates the need for circulators or phase shifters. Additionally, a fixed-length (or tunable) straight waveguide is added to fine-tune the phase difference between the two magnetrons, thereby maximizing the combining efficiency to approximately 99% in experiments. The high combining efficiency is maintained once the combining system is established. The combining efficiency remains above 95% even when different magnetrons are alternated. These results highlight its potential as a high-efficiency solution for magnetron microwave combining applications and industrial-scale use.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"73 2","pages":"1079-1082"},"PeriodicalIF":3.2,"publicationDate":"2025-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146082185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Papers for a Special Issue of IEEE Transactions on Electron Devices: Ultrawide Band Gap Semiconductor Devices for RF, Power and Optoelectronic Applications 《IEEE电子器件学报:用于射频、功率和光电子应用的超宽带隙半导体器件》特刊征文
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-11 DOI: 10.1109/TED.2025.3637350
{"title":"Call for Papers for a Special Issue of IEEE Transactions on Electron Devices: Ultrawide Band Gap Semiconductor Devices for RF, Power and Optoelectronic Applications","authors":"","doi":"10.1109/TED.2025.3637350","DOIUrl":"https://doi.org/10.1109/TED.2025.3637350","url":null,"abstract":"","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 12","pages":"7192-7193"},"PeriodicalIF":3.2,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11298382","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Electron Devices Information for Authors IEEE电子器件信息汇刊
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-11 DOI: 10.1109/TED.2025.3637352
{"title":"IEEE Transactions on Electron Devices Information for Authors","authors":"","doi":"10.1109/TED.2025.3637352","DOIUrl":"https://doi.org/10.1109/TED.2025.3637352","url":null,"abstract":"","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 12","pages":"C3-C3"},"PeriodicalIF":3.2,"publicationDate":"2025-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11298381","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Size Scaling in Cryogenic InGaAs/InP HEMTs for Low-Noise and High-Frequency Performance 低温InGaAs/InP hemt中尺寸缩放对低噪声和高频性能的影响
IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-12-02 DOI: 10.1109/TED.2025.3630613
Alberto Ferraris;Eunjung Cha;Antonis Olziersky;Marilyne Sousa;Hung-Chi Han;Edoardo Charbon;Kirsten Moselund;Cezar Zota
This work investigates the impact of size scaling on the performance of cryogenic InxGa1_xAs/InP high electron mobility transistors (HEMTs) for low-noise and high-frequency applications. Two quantum-well heterostructures, with 75% and 80% indium content, are examined from 300 to 4 K, including devices with gate lengths down to 40 nm and gate widths down to 380 nm. At cryogenic temperatures, the 80% indium channel achieves a record combination of high-frequency metrics ${textit{f}}_{textit{T}} ={text{622}}$ GHz, ${textit{f}}_{text {MAX}} ={text{733}}$ GHz, and low-noise indication factor $({textit{I}}_{textit{D}})^{textsf{1/2}} / {textit{g}}_{textit{m}} = {text{0}}.{text{17}}~({text{V}}cdot text {mm}/text {S})^{textsf{1/2}}$ on the same device. This performance is enabled by heterostructure engineering, resulting in ultralow ${textit{R}}_{text {ON}} = ~Omega cdot $ $mu $ m. The 75% indium heterostructure instead demonstrates superior low-noise operation, with a minimum subthreshold swing SS = 8.5 mV/decade and a noise indication factor as low as $({textit{I}}_{textit{D}})^{textsf{1/2}} / {textit{g}}_{textit{m}} = {textsf{0.15}}~({text{V}}cdot text {mm}/text {S})^{1/2}$ at optimal device dimensions. These results highlight the potential of InGaAs/InP HEMTs in cryogenic low-noise amplifiers (LNAs), for qubit readout in future high-density quantum computing architectures.
这项工作研究了尺寸缩放对低温InxGa1_xAs/InP高电子迁移率晶体管(hemt)性能的影响,用于低噪声和高频应用。两个量子阱异质结构,有75% and 80% indium content, are examined from 300 to 4 K, including devices with gate lengths down to 40 nm and gate widths down to 380 nm. At cryogenic temperatures, the 80% indium channel achieves a record combination of high-frequency metrics ${textit{f}}_{textit{T}} ={text{622}}$ GHz, ${textit{f}}_{text {MAX}} ={text{733}}$ GHz, and low-noise indication factor $({textit{I}}_{textit{D}})^{textsf{1/2}} / {textit{g}}_{textit{m}} = {text{0}}.{text{17}}~({text{V}}cdot text {mm}/text {S})^{textsf{1/2}}$ on the same device. This performance is enabled by heterostructure engineering, resulting in ultralow ${textit{R}}_{text {ON}} = ~Omega cdot $ $mu $ m. The 75% indium heterostructure instead demonstrates superior low-noise operation, with a minimum subthreshold swing SS = 8.5 mV/decade and a noise indication factor as low as $({textit{I}}_{textit{D}})^{textsf{1/2}} / {textit{g}}_{textit{m}} = {textsf{0.15}}~({text{V}}cdot text {mm}/text {S})^{1/2}$ at optimal device dimensions. These results highlight the potential of InGaAs/InP HEMTs in cryogenic low-noise amplifiers (LNAs), for qubit readout in future high-density quantum computing architectures.
{"title":"Impact of Size Scaling in Cryogenic InGaAs/InP HEMTs for Low-Noise and High-Frequency Performance","authors":"Alberto Ferraris;Eunjung Cha;Antonis Olziersky;Marilyne Sousa;Hung-Chi Han;Edoardo Charbon;Kirsten Moselund;Cezar Zota","doi":"10.1109/TED.2025.3630613","DOIUrl":"https://doi.org/10.1109/TED.2025.3630613","url":null,"abstract":"This work investigates the impact of size scaling on the performance of cryogenic In<italic><sub>x</sub></i>Ga<sub>1</sub>_<sub>x</sub>As/InP high electron mobility transistors (HEMTs) for low-noise and high-frequency applications. Two quantum-well heterostructures, with 75% and 80% indium content, are examined from 300 to 4 K, including devices with gate lengths down to 40 nm and gate widths down to 380 nm. At cryogenic temperatures, the 80% indium channel achieves a record combination of high-frequency metrics <inline-formula> <tex-math>${textit{f}}_{textit{T}} ={text{622}}$ </tex-math></inline-formula> GHz, <inline-formula> <tex-math>${textit{f}}_{text {MAX}} ={text{733}}$ </tex-math></inline-formula> GHz, and low-noise indication factor <inline-formula> <tex-math>$({textit{I}}_{textit{D}})^{textsf{1/2}} / {textit{g}}_{textit{m}} = {text{0}}.{text{17}}~({text{V}}cdot text {mm}/text {S})^{textsf{1/2}}$ </tex-math></inline-formula> on the same device. This performance is enabled by heterostructure engineering, resulting in ultralow <inline-formula> <tex-math>${textit{R}}_{text {ON}} = ~Omega cdot $ </tex-math></inline-formula><inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m. The 75% indium heterostructure instead demonstrates superior low-noise operation, with a minimum subthreshold swing SS = 8.5 mV/decade and a noise indication factor as low as <inline-formula> <tex-math>$({textit{I}}_{textit{D}})^{textsf{1/2}} / {textit{g}}_{textit{m}} = {textsf{0.15}}~({text{V}}cdot text {mm}/text {S})^{1/2}$ </tex-math></inline-formula> at optimal device dimensions. These results highlight the potential of InGaAs/InP HEMTs in cryogenic low-noise amplifiers (LNAs), for qubit readout in future high-density quantum computing architectures.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 12","pages":"7175-7181"},"PeriodicalIF":3.2,"publicationDate":"2025-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145719127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Electron Devices
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1