Diamesa mendotae (Diptera: Chironomidae) Demonstrate Predictable Behavior Patterns Associated with Aging and Mortality

IF 1 3区 农林科学 Q3 ENTOMOLOGY Journal of Insect Behavior Pub Date : 2024-08-01 DOI:10.1007/s10905-024-09858-7
Hannah Bodmer, Corrie Nyquist, Bruce Vondracek
{"title":"Diamesa mendotae (Diptera: Chironomidae) Demonstrate Predictable Behavior Patterns Associated with Aging and Mortality","authors":"Hannah Bodmer, Corrie Nyquist, Bruce Vondracek","doi":"10.1007/s10905-024-09858-7","DOIUrl":null,"url":null,"abstract":"<p>Chironomidae (Diptera) are one of the most abundant aquatic insects in freshwater habitats and play key roles in aquatic ecosystems. Many studies have assessed chironomid longevity under varying conditions to estimate potential consequences of climate change on longevity. However, these studies did not account for behavioral changes that may affect the ability of chironomids to find a mate or return to the water for oviposition. Longevity estimates may therefore underestimate the effects of climate change on chironomids by neglecting behavior-related fitness losses. To better understand how chironomid behaviors relate to survivorship, we used previously identified behaviors to determine how behavior patterns changed as the chironomid <i>Diamesa mendotae</i> aged. We found that <i>D. mendotae</i> exhibited age-related behaviors that correlated with a decrease in mobility over time. Additionally, behaviors performed early post-collection in <i>D. mendotae</i> adult lifespans were predictive of total chironomid longevity. These findings will help improve estimates of chironomid longevity and our understanding of age-related behaviors in other invertebrates. Improved methods for determining longevity and age-specific fitness-linked behaviors will allow us to better understand climate change’s impacts on aquatic insect survival and reproduction, which has broad ramifications for the aquatic ecosystems where they are abundant.</p>","PeriodicalId":16180,"journal":{"name":"Journal of Insect Behavior","volume":"52 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Behavior","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10905-024-09858-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chironomidae (Diptera) are one of the most abundant aquatic insects in freshwater habitats and play key roles in aquatic ecosystems. Many studies have assessed chironomid longevity under varying conditions to estimate potential consequences of climate change on longevity. However, these studies did not account for behavioral changes that may affect the ability of chironomids to find a mate or return to the water for oviposition. Longevity estimates may therefore underestimate the effects of climate change on chironomids by neglecting behavior-related fitness losses. To better understand how chironomid behaviors relate to survivorship, we used previously identified behaviors to determine how behavior patterns changed as the chironomid Diamesa mendotae aged. We found that D. mendotae exhibited age-related behaviors that correlated with a decrease in mobility over time. Additionally, behaviors performed early post-collection in D. mendotae adult lifespans were predictive of total chironomid longevity. These findings will help improve estimates of chironomid longevity and our understanding of age-related behaviors in other invertebrates. Improved methods for determining longevity and age-specific fitness-linked behaviors will allow us to better understand climate change’s impacts on aquatic insect survival and reproduction, which has broad ramifications for the aquatic ecosystems where they are abundant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diamesa mendotae(双翅目:摇蚊科)表现出与衰老和死亡相关的可预测行为模式
摇蚊(双翅目)是淡水生境中数量最多的水生昆虫之一,在水生生态系统中发挥着关键作用。许多研究评估了摇蚊在不同条件下的寿命,以估计气候变化对寿命的潜在影响。然而,这些研究并未考虑可能影响摇蚊寻找配偶或返回水中产卵能力的行为变化。因此,对寿命的估计可能会低估气候变化对摇蚊的影响,因为它们忽略了与行为相关的体能损失。为了更好地了解摇蚊的行为与存活率之间的关系,我们利用之前确定的行为来确定摇蚊Diamesa mendotae的行为模式是如何随着年龄的增长而变化的。我们发现,D. mendotae表现出与年龄相关的行为,这些行为与随着时间推移移动性降低有关。此外,D. mendotae成虫采集后早期的行为还能预测摇蚊的总寿命。这些发现将有助于提高对摇蚊寿命的估计以及我们对其他无脊椎动物与年龄相关行为的理解。改进寿命和与年龄相关的行为的测定方法,将使我们能够更好地了解气候变化对水生昆虫生存和繁殖的影响,这对它们大量存在的水生生态系统具有广泛的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Insect Behavior
Journal of Insect Behavior 生物-昆虫学
CiteScore
1.50
自引率
0.00%
发文量
16
审稿时长
6-12 weeks
期刊介绍: Journal of Insect Behavior offers peer-reviewed research articles and short critical reviews on all aspects of the behavior of insects and other terrestrial arthropods such as spiders, centipedes, millipedes, and isopods. An internationally renowned editorial board discusses technological innovations and new developments in the field, emphasizing topics such as behavioral ecology, motor patterns and recognition, and genetic determinants.
期刊最新文献
Intraguild Predation or Spatial Separation? The efficacy and Interactions of Two Natural Enemy Species for the Biological Control of Pear Psyllid (Cacopsylla pyri) Using an Agent-Based Model to Explore the Effectiveness of Strategies Used by Ants to Mitigate the Spread of the Fungus Ophiocordyceps camponoti-rufipedis Altered Heat-Avoidance Behavior Following Damage to the Extended Architecture of Mexican Jumping Bean Moth Larvae (Cydia saltitans) Diamesa mendotae (Diptera: Chironomidae) Demonstrate Predictable Behavior Patterns Associated with Aging and Mortality Death Feigning in Larvae of Scorpionflies (Mecoptera: Panorpidae): Frequency and Postural Changes Based on Larval Instars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1