Lavanya Raja, Sangeethapriya Balamuthu, Srinivasadesikan Venkatesan, Lin Ming-chang, Padmini Vediappen
{"title":"Sensitive and selective detection of glycine betaine using curcumin-based fluorescent molecule with real sample analysis","authors":"Lavanya Raja, Sangeethapriya Balamuthu, Srinivasadesikan Venkatesan, Lin Ming-chang, Padmini Vediappen","doi":"10.1007/s13738-024-03071-1","DOIUrl":null,"url":null,"abstract":"<div><p>A highly selective biosensor for glycine betaine (GB) based on the curcumin derivative (1BHD) is described, which displays a significant visual change and a lower detection limit (76 nM). The GB sensor displays a 1:1 binding ratio and a binding constant of 9.042 × 10<sup>7</sup> M<sup>−1</sup>. The binding mechanism of 1BHD for glycine betaine was confirmed by <sup>1</sup>H NMR titration, mass spectrometry, and DFT calculation. The fluorescence intensity of 1BHD was selectively quenched by GB, and an obvious color change from yellow to orange was observed by the naked eye. The above results have been utilized to detect GB sensitively in blood and urine samples.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":676,"journal":{"name":"Journal of the Iranian Chemical Society","volume":"21 9","pages":"2325 - 2333"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Iranian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13738-024-03071-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A highly selective biosensor for glycine betaine (GB) based on the curcumin derivative (1BHD) is described, which displays a significant visual change and a lower detection limit (76 nM). The GB sensor displays a 1:1 binding ratio and a binding constant of 9.042 × 107 M−1. The binding mechanism of 1BHD for glycine betaine was confirmed by 1H NMR titration, mass spectrometry, and DFT calculation. The fluorescence intensity of 1BHD was selectively quenched by GB, and an obvious color change from yellow to orange was observed by the naked eye. The above results have been utilized to detect GB sensitively in blood and urine samples.
期刊介绍:
JICS is an international journal covering general fields of chemistry. JICS welcomes high quality original papers in English dealing with experimental, theoretical and applied research related to all branches of chemistry. These include the fields of analytical, inorganic, organic and physical chemistry as well as the chemical biology area. Review articles discussing specific areas of chemistry of current chemical or biological importance are also published. JICS ensures visibility of your research results to a worldwide audience in science. You are kindly invited to submit your manuscript to the Editor-in-Chief or Regional Editor. All contributions in the form of original papers or short communications will be peer reviewed and published free of charge after acceptance.