{"title":"Automated measurement of lumbar pedicle screw parameters using deep learning algorithm on preoperative CT scans","authors":"","doi":"10.1016/j.jbo.2024.100627","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>This study aims to devise and assess an automated measurement framework for lumbar pedicle screw parameters leveraging preoperative computed tomography (CT) scans and a deep learning algorithm.</p></div><div><h3>Methods</h3><p>A deep learning model was constructed employing a dataset comprising 1410 axial preoperative CT images of lumbar pedicles sourced from 282 patients. The model was trained to predict several screw parameters, including the axial angle and width of pedicles, the length of pedicle screw paths, and the interpedicular distance. The mean values of these parameters, as determined by two radiologists and one spinal surgeon, served as the reference standard.</p></div><div><h3>Results</h3><p>The deep learning model achieved high agreement with the reference standard for the axial angle of the left pedicle (ICC = 0.92) and right pedicle (ICC = 0.93), as well as for the length of the left pedicle screw path (ICC = 0.82) and right pedicle (ICC = 0.87). Similarly, high agreement was observed for pedicle width (left ICC = 0.97, right ICC = 0.98) and interpedicular distance (ICC = 0.91). Overall, the model’s performance paralleled that of manual determination of lumbar pedicle screw parameters.</p></div><div><h3>Conclusion</h3><p>The developed deep learning-based model demonstrates proficiency in accurately identifying landmarks on preoperative CT scans and autonomously generating parameters relevant to lumbar pedicle screw placement. These findings suggest its potential to offer efficient and precise measurements for clinical applications.</p></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212137424001076/pdfft?md5=56bd5c5907144c0f8db870081bf12a06&pid=1-s2.0-S2212137424001076-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001076","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to devise and assess an automated measurement framework for lumbar pedicle screw parameters leveraging preoperative computed tomography (CT) scans and a deep learning algorithm.
Methods
A deep learning model was constructed employing a dataset comprising 1410 axial preoperative CT images of lumbar pedicles sourced from 282 patients. The model was trained to predict several screw parameters, including the axial angle and width of pedicles, the length of pedicle screw paths, and the interpedicular distance. The mean values of these parameters, as determined by two radiologists and one spinal surgeon, served as the reference standard.
Results
The deep learning model achieved high agreement with the reference standard for the axial angle of the left pedicle (ICC = 0.92) and right pedicle (ICC = 0.93), as well as for the length of the left pedicle screw path (ICC = 0.82) and right pedicle (ICC = 0.87). Similarly, high agreement was observed for pedicle width (left ICC = 0.97, right ICC = 0.98) and interpedicular distance (ICC = 0.91). Overall, the model’s performance paralleled that of manual determination of lumbar pedicle screw parameters.
Conclusion
The developed deep learning-based model demonstrates proficiency in accurately identifying landmarks on preoperative CT scans and autonomously generating parameters relevant to lumbar pedicle screw placement. These findings suggest its potential to offer efficient and precise measurements for clinical applications.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.