{"title":"The METTL3/TGF-β1 signaling axis promotes osteosarcoma progression by inducing MSC differentiation into CAFs via m6A modification","authors":"Jin Qi , Sihang Liu , Baomin Wu , Gang Xue","doi":"10.1016/j.jbo.2025.100662","DOIUrl":null,"url":null,"abstract":"<div><div>Osteosarcoma, a prevalent and aggressive skeletal malignancy, significantly impacts the prognosis of individuals, particularly young patients. Current treatments, including surgery and chemotherapy, often prove inadequate for advanced osteosarcoma with metastasis. This study investigates the role of the METTL3/TGF-β1 signaling axis in promoting osteosarcoma progression by inducing mesenchymal stem cells (MSCs) to differentiate into cancer-associated fibroblasts (CAFs). Utilizing co-culture technology, we demonstrated that osteosarcoma cells secrete TGF-β1, which is crucial for MSC differentiation into CAFs, as evidenced by the increased expression of CAF markers α-SMA, FSP-1, and FAP. Additionally, METTL3 was found to enhance the stability and expression of TGF-β1 mRNA through m<sup>6</sup>A modification, thereby facilitating the differentiation process of MSCs. <em>In vivo</em> xenograft experiments further confirmed that the METTL3/TGF-β1 axis significantly promotes tumor growth in osteosarcoma by mediating the differentiation of MSCs into CAFs. These findings provide new insights into the molecular mechanisms underlying osteosarcoma progression and highlight potential therapeutic targets for treating advanced stages of this malignancy.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":"51 ","pages":"Article 100662"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221213742500003X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Osteosarcoma, a prevalent and aggressive skeletal malignancy, significantly impacts the prognosis of individuals, particularly young patients. Current treatments, including surgery and chemotherapy, often prove inadequate for advanced osteosarcoma with metastasis. This study investigates the role of the METTL3/TGF-β1 signaling axis in promoting osteosarcoma progression by inducing mesenchymal stem cells (MSCs) to differentiate into cancer-associated fibroblasts (CAFs). Utilizing co-culture technology, we demonstrated that osteosarcoma cells secrete TGF-β1, which is crucial for MSC differentiation into CAFs, as evidenced by the increased expression of CAF markers α-SMA, FSP-1, and FAP. Additionally, METTL3 was found to enhance the stability and expression of TGF-β1 mRNA through m6A modification, thereby facilitating the differentiation process of MSCs. In vivo xenograft experiments further confirmed that the METTL3/TGF-β1 axis significantly promotes tumor growth in osteosarcoma by mediating the differentiation of MSCs into CAFs. These findings provide new insights into the molecular mechanisms underlying osteosarcoma progression and highlight potential therapeutic targets for treating advanced stages of this malignancy.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.