{"title":"Continuous-variable quantum kernel method on a programmable photonic quantum processor","authors":"Keitaro Anai, Shion Ikehara, Yoshichika Yano, Daichi Okuno, Shuntaro Takeda","doi":"10.1103/physreva.110.022404","DOIUrl":null,"url":null,"abstract":"Among various quantum machine learning (QML) algorithms, the quantum kernel method has especially attracted attention due to its compatibility with noisy intermediate-scale quantum devices and its potential to achieve quantum advantage. This method performs classification and regression by nonlinearly mapping data into quantum states in a higher-dimensional Hilbert space. Thus far, the quantum kernel method has been implemented only on qubit-based systems, but continuous-variable (CV) systems can potentially offer superior computational power by utilizing its infinite-dimensional Hilbert space. Here, we demonstrate the implementation of the classification task with the CV quantum kernel method on a programmable photonic quantum processor. We experimentally prove that the CV quantum kernel method successfully classifies several datasets robustly even under the experimental imperfections, with high accuracies comparable to the classical kernel. This demonstration sheds light on the utility of CV quantum systems for QML and should stimulate further study in other CV QML algorithms.","PeriodicalId":20146,"journal":{"name":"Physical Review A","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review A","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreva.110.022404","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Among various quantum machine learning (QML) algorithms, the quantum kernel method has especially attracted attention due to its compatibility with noisy intermediate-scale quantum devices and its potential to achieve quantum advantage. This method performs classification and regression by nonlinearly mapping data into quantum states in a higher-dimensional Hilbert space. Thus far, the quantum kernel method has been implemented only on qubit-based systems, but continuous-variable (CV) systems can potentially offer superior computational power by utilizing its infinite-dimensional Hilbert space. Here, we demonstrate the implementation of the classification task with the CV quantum kernel method on a programmable photonic quantum processor. We experimentally prove that the CV quantum kernel method successfully classifies several datasets robustly even under the experimental imperfections, with high accuracies comparable to the classical kernel. This demonstration sheds light on the utility of CV quantum systems for QML and should stimulate further study in other CV QML algorithms.
期刊介绍:
Physical Review A (PRA) publishes important developments in the rapidly evolving areas of atomic, molecular, and optical (AMO) physics, quantum information, and related fundamental concepts.
PRA covers atomic, molecular, and optical physics, foundations of quantum mechanics, and quantum information, including:
-Fundamental concepts
-Quantum information
-Atomic and molecular structure and dynamics; high-precision measurement
-Atomic and molecular collisions and interactions
-Atomic and molecular processes in external fields, including interactions with strong fields and short pulses
-Matter waves and collective properties of cold atoms and molecules
-Quantum optics, physics of lasers, nonlinear optics, and classical optics