{"title":"Microwave-assisted synthesis of electrode materials for LIBs: MoS2/rGO heterostructures","authors":"","doi":"10.1080/17415993.2024.2387228","DOIUrl":null,"url":null,"abstract":"<div><p>The incomplete reduction of graphene oxide (GO) yields reduced graphene oxide (rGO), characterized by a zero band gap and intrinsic layer stacking, thus constraining its practical utility across diverse domains. Fortunately, this challenge can be effectively addressed by employing a suitable substrate for the fabrication of MoS<sub>2</sub>/rGO heterostructures. Nanocomposites of MoS<sub>2</sub>/reduced graphene oxide (MoS<sub>2</sub>/rGO-700W and MoS<sub>2</sub>/rGO-560W) were synthesized using MoS<sub>2</sub> and GO solutions as starting materials through microwave-assisted synthesis with microwave power treatments of 700W and 560W, respectively. Structural characterization results reveal that the particle size of MoS<sub>2</sub> within the composites is notably smaller compared to that of pure MoS<sub>2</sub>. The MoS<sub>2</sub>/rGO-700W composite demonstrates a more homogeneous dispersion of MoS<sub>2</sub> and features a well-developed hierarchical porous structure with increased pore volume and specific surface area. The MoS<sub>2</sub>/rGO-700W composite demonstrates elevated I<sub>D</sub>/I<sub>G</sub> ratio, C/O ratio and C = C peak area, suggesting that increased microwave power enhances the removal of oxygen-containing groups from rGO. This process significantly restores the extended conjugated structure of graphene, thereby offering enhanced conductivity at the MoS<sub>2</sub> interface. Furthermore, the proposed strategy holds considerable theoretical value and provides significant insights for the development process of novel MoS<sub>2</sub>-based composite electrode materials.</p></div>","PeriodicalId":17081,"journal":{"name":"Journal of Sulfur Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sulfur Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1741599324000242","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The incomplete reduction of graphene oxide (GO) yields reduced graphene oxide (rGO), characterized by a zero band gap and intrinsic layer stacking, thus constraining its practical utility across diverse domains. Fortunately, this challenge can be effectively addressed by employing a suitable substrate for the fabrication of MoS2/rGO heterostructures. Nanocomposites of MoS2/reduced graphene oxide (MoS2/rGO-700W and MoS2/rGO-560W) were synthesized using MoS2 and GO solutions as starting materials through microwave-assisted synthesis with microwave power treatments of 700W and 560W, respectively. Structural characterization results reveal that the particle size of MoS2 within the composites is notably smaller compared to that of pure MoS2. The MoS2/rGO-700W composite demonstrates a more homogeneous dispersion of MoS2 and features a well-developed hierarchical porous structure with increased pore volume and specific surface area. The MoS2/rGO-700W composite demonstrates elevated ID/IG ratio, C/O ratio and C = C peak area, suggesting that increased microwave power enhances the removal of oxygen-containing groups from rGO. This process significantly restores the extended conjugated structure of graphene, thereby offering enhanced conductivity at the MoS2 interface. Furthermore, the proposed strategy holds considerable theoretical value and provides significant insights for the development process of novel MoS2-based composite electrode materials.
期刊介绍:
The Journal of Sulfur Chemistry is an international journal for the dissemination of scientific results in the rapidly expanding realm of sulfur chemistry. The journal publishes high quality reviews, full papers and communications in the following areas: organic and inorganic chemistry, industrial chemistry, materials and polymer chemistry, biological chemistry and interdisciplinary studies directly related to sulfur science.
Papers outlining theoretical, physical, mechanistic or synthetic studies pertaining to sulfur chemistry are welcome. Hence the target audience is made up of academic and industrial chemists with peripheral or focused interests in sulfur chemistry. Manuscripts that truly define the aims of the journal include, but are not limited to, those that offer: a) innovative use of sulfur reagents; b) new synthetic approaches to sulfur-containing biomolecules, materials or organic and organometallic compounds; c) theoretical and physical studies that facilitate the understanding of sulfur structure, bonding or reactivity; d) catalytic, selective, synthetically useful or noteworthy transformations of sulfur containing molecules; e) industrial applications of sulfur chemistry; f) unique sulfur atom or molecule involvement in interfacial phenomena; g) descriptions of solid phase or combinatorial methods involving sulfur containing substrates. Submissions pertaining to related atoms such as selenium and tellurium are also welcome. Articles offering routine heterocycle formation through established reactions of sulfur containing substrates are outside the scope of the journal.