Meng Li, Matthew T. Curnan, Stephen D. House, Wissam A. Saidi, Judith C. Yang
{"title":"Temperature Dependent Early-Stage Oxidation Dynamics of Cu(100) Film with Faceted Holes","authors":"Meng Li, Matthew T. Curnan, Stephen D. House, Wissam A. Saidi, Judith C. Yang","doi":"10.1007/s11085-024-10274-7","DOIUrl":null,"url":null,"abstract":"<div><p>Fundamental understanding of surface oxidation dynamics is critical for rational corrosion protection and advanced manufacturing of nanostructured oxides. In situ environmental TEM (ETEM) provides high spatial (nano- to atomic- scale) and temporal (< 0.1 s) resolution to investigate the early-stage oxidation/corrosion dynamics of metals and alloys. Thin samples with facets are widely used to enable cross-sectional observation of the oxidation dynamics in ETEM. However, how different facet orientations oxidize under the same conditions, and how these facets change the oxidation process, has not been investigated before. Using in situ ETEM, we systematically compare the oxidation dynamics of Cu(001) thin films, with faceted holes exposing {100} and {110} facets at temperatures ranging from 250–600 °C under 0.03 Pa O<sub>2</sub>. Oxidation preference is observed to change, from Cu(110) facets at lower temperatures to Cu(100) facets at ~ 500 °C. Oxide growth mechanisms change from outward growth on Cu<sub>2</sub>O surfaces at low temperatures, to inward growth on Cu-Cu<sub>2</sub>O interfaces at high temperatures. At high temperatures (500–600 °C), a rod-like Cu<sub>2</sub>O morphology is observed, with side facets of ~ {024} and top facets of {100} on Cu(100). This differs from the square-shaped Cu<sub>2</sub>O exposing {110} facets formed on Cu(001) surfaces. Rod-like oxides exhibit directional growth along their lengths with linear growth rates, regardless of rod length and width. This suggests that O from Cu(001) surfaces, rather than Cu(100) facets, serves as an O source for oxide growth. These results show a direct comparison of oxidation at different orientations with temperature, underscoring the temperature dependence of oxidation preference. Our results also suggest future in situ ETEM experiments viewing oxidation corrosion cross-sectionally should be cautious when oxide size is comparable with sample thickness, as the oxidizing mechanism may change due to sample thickness.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 5","pages":"1237 - 1248"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10274-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Fundamental understanding of surface oxidation dynamics is critical for rational corrosion protection and advanced manufacturing of nanostructured oxides. In situ environmental TEM (ETEM) provides high spatial (nano- to atomic- scale) and temporal (< 0.1 s) resolution to investigate the early-stage oxidation/corrosion dynamics of metals and alloys. Thin samples with facets are widely used to enable cross-sectional observation of the oxidation dynamics in ETEM. However, how different facet orientations oxidize under the same conditions, and how these facets change the oxidation process, has not been investigated before. Using in situ ETEM, we systematically compare the oxidation dynamics of Cu(001) thin films, with faceted holes exposing {100} and {110} facets at temperatures ranging from 250–600 °C under 0.03 Pa O2. Oxidation preference is observed to change, from Cu(110) facets at lower temperatures to Cu(100) facets at ~ 500 °C. Oxide growth mechanisms change from outward growth on Cu2O surfaces at low temperatures, to inward growth on Cu-Cu2O interfaces at high temperatures. At high temperatures (500–600 °C), a rod-like Cu2O morphology is observed, with side facets of ~ {024} and top facets of {100} on Cu(100). This differs from the square-shaped Cu2O exposing {110} facets formed on Cu(001) surfaces. Rod-like oxides exhibit directional growth along their lengths with linear growth rates, regardless of rod length and width. This suggests that O from Cu(001) surfaces, rather than Cu(100) facets, serves as an O source for oxide growth. These results show a direct comparison of oxidation at different orientations with temperature, underscoring the temperature dependence of oxidation preference. Our results also suggest future in situ ETEM experiments viewing oxidation corrosion cross-sectionally should be cautious when oxide size is comparable with sample thickness, as the oxidizing mechanism may change due to sample thickness.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.