All-Optical, Reconfigurable, and Power Independent Neural Activation Function by Means of Phase Modulation

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Quantum Electronics Pub Date : 2024-08-02 DOI:10.1109/JQE.2024.3437353
George Sarantoglou;Adonis Bogris;Charis Mesaritakis
{"title":"All-Optical, Reconfigurable, and Power Independent Neural Activation Function by Means of Phase Modulation","authors":"George Sarantoglou;Adonis Bogris;Charis Mesaritakis","doi":"10.1109/JQE.2024.3437353","DOIUrl":null,"url":null,"abstract":"In this work, we present numerical results concerning an integrated photonic non-linear activation function that relies on a power independent, non-linear phase to amplitude conversion in a passive optical resonator. The underlying mechanism is universal to all optical filters, whereas here, simulations were based on micro-ring resonators. Investigation revealed that the photonic neural node can be tuned to support a wide variety of continuous activation functions that are relevant to the neural network architectures, such as the sigmoid and the soft-plus functions. The proposed photonic node is numerically evaluated in the context of time delayed reservoir computing (TDRC) scheme, targeting the one-step ahead prediction of the Santa Fe series. The proposed phase to amplitude TDRC is benchmarked versus the conventional amplitude based TDRC, showcasing a performance boost by one order of magnitude.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10620692/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present numerical results concerning an integrated photonic non-linear activation function that relies on a power independent, non-linear phase to amplitude conversion in a passive optical resonator. The underlying mechanism is universal to all optical filters, whereas here, simulations were based on micro-ring resonators. Investigation revealed that the photonic neural node can be tuned to support a wide variety of continuous activation functions that are relevant to the neural network architectures, such as the sigmoid and the soft-plus functions. The proposed photonic node is numerically evaluated in the context of time delayed reservoir computing (TDRC) scheme, targeting the one-step ahead prediction of the Santa Fe series. The proposed phase to amplitude TDRC is benchmarked versus the conventional amplitude based TDRC, showcasing a performance boost by one order of magnitude.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相位调制实现全光学、可重构和功率无关的神经激活功能
在这项工作中,我们展示了有关集成光子非线性激活函数的数值结果,该函数依赖于无源光学谐振器中与功率无关的非线性相位到振幅转换。其基本机制适用于所有光学滤波器,而这里的模拟则基于微环谐振器。研究表明,光子神经节点可以进行调整,以支持与神经网络架构相关的各种连续激活函数,如sigmoid函数和软加函数。在时延储层计算(TDRC)方案的背景下,对所提出的光子节点进行了数值评估,目标是提前一步预测 Santa Fe 序列。拟议的相位到振幅 TDRC 与传统的基于振幅的 TDRC 相比,性能提高了一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
期刊最新文献
A Nanoplasmonic Directional Coupler Utilizing a Backed Conductor on Dielectric Substrate With Finite Width Intensity and Degree of Coherence of Vortex Beams in Atmospheric Turbulence Numerical Modeling for 250 nm DUV LEDs With Discrete p-type Functional Layers to Manage Both Carrier and Photon Transport C-Band Directly Modulated Lasers With Tunable Photon–Photon Resonance in InP Membrane High Precision and Fast Distributed Temperature Data Demodulation Algorithm of Optical Frequency Domain Reflectometer Based on LSTM-CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1