{"title":"Torsional influences on cross‐conjugated thieno[3,4‐b]thiophene photochromes","authors":"Nicholas P. Adams, John D. Tovar","doi":"10.1002/poc.4650","DOIUrl":null,"url":null,"abstract":"Photoresponsive conjugated polymers are a promising target for modern organic electronics. Numerous photoswitchable repeat units have been included covalently within polymeric structures to enable responsive chromic materials, most commonly through side‐chain appendages or through formal conjugation along a π‐conjugated backbone. We recently disclosed a new design whereby the photoswitch elements are cross conjugated to a conjugated polymer main chain. In this case, we found that the extent of photoconversion was dictated in part by competitive main chain light absorption, which could be suppressed by using a photoswitching motif that carried most of the frontier molecular orbital densities. Here, we report the modeling and synthesis of a series of thieno[3,4‐<jats:italic>b</jats:italic>]thiophene (TT)‐based photochromes with various aromatic flankers imparting varying degrees of steric bulk and π‐conjugation in order to elucidate the balancing act between steric and electronic factors to promote photochromism. These model systems provide a better understanding of the behavior of photochromic units within extended oligomeric and polymeric π‐conjugated materials.","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/poc.4650","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Photoresponsive conjugated polymers are a promising target for modern organic electronics. Numerous photoswitchable repeat units have been included covalently within polymeric structures to enable responsive chromic materials, most commonly through side‐chain appendages or through formal conjugation along a π‐conjugated backbone. We recently disclosed a new design whereby the photoswitch elements are cross conjugated to a conjugated polymer main chain. In this case, we found that the extent of photoconversion was dictated in part by competitive main chain light absorption, which could be suppressed by using a photoswitching motif that carried most of the frontier molecular orbital densities. Here, we report the modeling and synthesis of a series of thieno[3,4‐b]thiophene (TT)‐based photochromes with various aromatic flankers imparting varying degrees of steric bulk and π‐conjugation in order to elucidate the balancing act between steric and electronic factors to promote photochromism. These model systems provide a better understanding of the behavior of photochromic units within extended oligomeric and polymeric π‐conjugated materials.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.