Enhancing the mechanical and electrical properties of irradiated acrylonitrile butadiene rubber/magnetite nanocomposites for electromagnetic shielding applications
{"title":"Enhancing the mechanical and electrical properties of irradiated acrylonitrile butadiene rubber/magnetite nanocomposites for electromagnetic shielding applications","authors":"Rania Mounir, MM El Zayat, A Sharaf, AA El-Gamal","doi":"10.1177/08927057241270832","DOIUrl":null,"url":null,"abstract":"By using a traditional roll mill, nitrile butadiene rubber (NBR)/magnetite nanocomposites for electromagnetic interference shielding applications were successfully prepared. The synthesized magnetite nanoparticles were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), and energy dispersive X-ray (EDX) techniques. The results from these techniques emphasis the preparation of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> with a diameter range between 3.8 nm and 19 nm. Before and after gamma irradiation at different doses the impact of adding different contents of magnetite nanoparticles in NBR was carefully examined through mechanical and electrical measurements for all samples at room temperature. The mechanical parameters and the electrical properties of NBR were enhanced after adding Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanoparticles. Electromagnetic interference shielding (EMI) for all fabricated nanocomposites before and after gamma-ray irradiation under the same conditions of pressure, humidity and temperature was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the prepared samples was measured in the X-band of the radio frequency range. There are three global maxima around 9.4 GHz, 10.4 GHz, and 11.4 GHz. Subsequent reinforcement of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanoparticles into NBR produced higher shielding effectiveness for radio frequency signals. Furthermore, applied gamma radiation doses improved the shielding properties of the fabricated nanocomposites.","PeriodicalId":17446,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/08927057241270832","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
By using a traditional roll mill, nitrile butadiene rubber (NBR)/magnetite nanocomposites for electromagnetic interference shielding applications were successfully prepared. The synthesized magnetite nanoparticles were analyzed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM), and energy dispersive X-ray (EDX) techniques. The results from these techniques emphasis the preparation of Fe3O4 with a diameter range between 3.8 nm and 19 nm. Before and after gamma irradiation at different doses the impact of adding different contents of magnetite nanoparticles in NBR was carefully examined through mechanical and electrical measurements for all samples at room temperature. The mechanical parameters and the electrical properties of NBR were enhanced after adding Fe3O4 nanoparticles. Electromagnetic interference shielding (EMI) for all fabricated nanocomposites before and after gamma-ray irradiation under the same conditions of pressure, humidity and temperature was performed as a promising application for these materials in practical life. The electromagnetic shielding effectiveness (SE) of the prepared samples was measured in the X-band of the radio frequency range. There are three global maxima around 9.4 GHz, 10.4 GHz, and 11.4 GHz. Subsequent reinforcement of Fe3O4 nanoparticles into NBR produced higher shielding effectiveness for radio frequency signals. Furthermore, applied gamma radiation doses improved the shielding properties of the fabricated nanocomposites.
期刊介绍:
The Journal of Thermoplastic Composite Materials is a fully peer-reviewed international journal that publishes original research and review articles on polymers, nanocomposites, and particulate-, discontinuous-, and continuous-fiber-reinforced materials in the areas of processing, materials science, mechanics, durability, design, non destructive evaluation and manufacturing science. This journal is a member of the Committee on Publication Ethics (COPE).