Qiqi Duan;Chang Shao;Guochen Zhou;Minghan Zhang;Qi Zhao;Yuhui Shi
{"title":"Distributed Evolution Strategies With Multi-Level Learning for Large-Scale Black-Box Optimization","authors":"Qiqi Duan;Chang Shao;Guochen Zhou;Minghan Zhang;Qi Zhao;Yuhui Shi","doi":"10.1109/TPDS.2024.3437688","DOIUrl":null,"url":null,"abstract":"In the post-Moore era, main performance gains of black-box optimizers are increasingly depending on parallelism, especially for large-scale optimization (LSO). Here we propose to parallelize the well-established covariance matrix adaptation evolution strategy (CMA-ES) and in particular its one latest LSO variant called limited-memory CMA-ES (LM-CMA). To achieve efficiency while approximating its powerful invariance property, we present a multilevel learning-based meta-framework for distributed LM-CMA. Owing to its hierarchically organized structure, Meta-ES is well-suited to implement our distributed meta-framework, wherein the outer-ES controls strategy parameters while all parallel inner-ESs run the serial LM-CMA with different settings. For the distribution mean update of the outer-ES, both the elitist and multi-recombination strategy are used in parallel to avoid stagnation and regression, respectively. To exploit spatiotemporal information, the global step-size adaptation combines Meta-ES with the parallel cumulative step-size adaptation. After each isolation time, our meta-framework employs both the structure and parameter learning strategy to combine aligned evolution paths for CMA reconstruction. Experiments on a set of large-scale benchmarking functions with memory-intensive evaluations, arguably reflecting many data-driven optimization problems, validate the benefits (e.g., effectiveness w.r.t. solution quality, and adaptability w.r.t. second-order learning) and costs of our meta-framework.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 11","pages":"2087-2101"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10621616/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the post-Moore era, main performance gains of black-box optimizers are increasingly depending on parallelism, especially for large-scale optimization (LSO). Here we propose to parallelize the well-established covariance matrix adaptation evolution strategy (CMA-ES) and in particular its one latest LSO variant called limited-memory CMA-ES (LM-CMA). To achieve efficiency while approximating its powerful invariance property, we present a multilevel learning-based meta-framework for distributed LM-CMA. Owing to its hierarchically organized structure, Meta-ES is well-suited to implement our distributed meta-framework, wherein the outer-ES controls strategy parameters while all parallel inner-ESs run the serial LM-CMA with different settings. For the distribution mean update of the outer-ES, both the elitist and multi-recombination strategy are used in parallel to avoid stagnation and regression, respectively. To exploit spatiotemporal information, the global step-size adaptation combines Meta-ES with the parallel cumulative step-size adaptation. After each isolation time, our meta-framework employs both the structure and parameter learning strategy to combine aligned evolution paths for CMA reconstruction. Experiments on a set of large-scale benchmarking functions with memory-intensive evaluations, arguably reflecting many data-driven optimization problems, validate the benefits (e.g., effectiveness w.r.t. solution quality, and adaptability w.r.t. second-order learning) and costs of our meta-framework.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.