Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2024-07-01 DOI:10.1088/1674-1056/ad50bd
Zhaowen Xu, Xue Bai, Jian Ma, Zhuangzhuang Wan, Chaoqun Wang
{"title":"Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials","authors":"Zhaowen Xu, Xue Bai, Jian Ma, Zhuangzhuang Wan, Chaoqun Wang","doi":"10.1088/1674-1056/ad50bd","DOIUrl":null,"url":null,"abstract":"Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated. The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime. An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio. An approach for characterizing grain size was proposed using spectral central frequency ratio (SCFR) based on time-frequency analysis. The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density; even at high power densities, a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect. This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density. Furthermore, both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials; however, the shear wave SCFR is more sensitive to finer-grained materials. This study holds great significance for evaluating metal material properties using laser ultrasound.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad50bd","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated. The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime. An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio. An approach for characterizing grain size was proposed using spectral central frequency ratio (SCFR) based on time-frequency analysis. The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density; even at high power densities, a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect. This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density. Furthermore, both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials; however, the shear wave SCFR is more sensitive to finer-grained materials. This study holds great significance for evaluating metal material properties using laser ultrasound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定量分析激光产生的超声波特性及其与多晶材料晶粒尺寸的相关性
评估了纳秒脉冲激光参数与激光在多晶材料中产生的超声波特性之间的定量关系。在轻微烧蚀状态下,大照射光斑的高能量脉冲激光在震源处同时产生超声纵波和剪切波。基于小波阈值和变模分解的优化去噪技术被用于降低低信噪比剪切波中的噪声。在时频分析的基础上,提出了一种利用频谱中心频率比(SCFR)表征晶粒尺寸的方法。结果表明,超声波的产生机制并非完全由激光功率密度决定;即使在高功率密度下,大光斑的高能量也能产生以热弹性效应为主的超声波形。这是因为在给定的激光功率密度下,随着激光照射光斑面积成比例增加,热弹性效应会增强。此外,在多晶材料中,纵波和剪切波 SCFR 与晶粒大小呈线性关系;但剪切波 SCFR 对较细晶粒的材料更为敏感。这项研究对利用激光超声评估金属材料特性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator Probing nickelate superconductors at atomic scale: A STEM review In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits Quantum confinement of carriers in the type-I quantum wells structure Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1