{"title":"Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures","authors":"Qiuchen Wang, Yuli Huang, Jing Xu, Xiqian Yu, Hong Li, Liquan Chen","doi":"10.1088/1674-1056/ad5276","DOIUrl":null,"url":null,"abstract":"Silicon (Si) is a competitive anode material owing to its high theoretical capacity and low electrochemical potential. Recently, the prospect of Si anodes in solid-state batteries (SSBs) has been proposed due to less solid electrolyte interphase (SEI) formation and particle pulverization. However, major challenges arise for Si anodes in SSBs at elevated temperatures. In this work, the failure mechanisms of Si-Li<sub>6</sub>PS<sub>5</sub>Cl (LPSC) composite anodes above 80 °C are thoroughly investigated from the perspectives of interface stability and (electro)chemo-mechanical effect. The chemistry and growth kinetics of Li<sub><italic toggle=\"yes\">x</italic></sub>Si|LPSC interphase are demonstrated by combining electrochemical, chemical and computational characterizations. Si and/or Si–P compound formed at Li<sub><italic toggle=\"yes\">x</italic></sub>Si|LPSC interface prove to be detrimental to interface stability at high temperatures. On the other hand, excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes. This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"99 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad5276","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon (Si) is a competitive anode material owing to its high theoretical capacity and low electrochemical potential. Recently, the prospect of Si anodes in solid-state batteries (SSBs) has been proposed due to less solid electrolyte interphase (SEI) formation and particle pulverization. However, major challenges arise for Si anodes in SSBs at elevated temperatures. In this work, the failure mechanisms of Si-Li6PS5Cl (LPSC) composite anodes above 80 °C are thoroughly investigated from the perspectives of interface stability and (electro)chemo-mechanical effect. The chemistry and growth kinetics of LixSi|LPSC interphase are demonstrated by combining electrochemical, chemical and computational characterizations. Si and/or Si–P compound formed at LixSi|LPSC interface prove to be detrimental to interface stability at high temperatures. On the other hand, excessive volume expansion and local stress caused by Si lithiation at high temperatures damage the mechanical structure of Si-LPSC composite anodes. This work elucidates the behavior and failure mechanisms of Si-based anodes in SSBs at high temperatures and provides insights into upgrading Si-based anodes for application in SSBs.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.