Quantum-Enhanced K-Nearest Neighbors for Text Classification: A Hybrid Approach with Unified Circuit and Reduced Quantum Gates

IF 4.4 Q1 OPTICS Advanced quantum technologies Pub Date : 2024-08-01 DOI:10.1002/qute.202400122
Amine Zeguendry, Zahi Jarir, Mohamed Quafafou
{"title":"Quantum-Enhanced K-Nearest Neighbors for Text Classification: A Hybrid Approach with Unified Circuit and Reduced Quantum Gates","authors":"Amine Zeguendry,&nbsp;Zahi Jarir,&nbsp;Mohamed Quafafou","doi":"10.1002/qute.202400122","DOIUrl":null,"url":null,"abstract":"<p>Text classification, a key process in natural language processing (NLP), relies on the k-nearest neighbors (KNN) algorithm for its simplicity and effectiveness. Traditional methods often grapple with the high-dimensional nature of textual data, leading to substantial computational demands. This study introduces a novel classical quantum k-nearest neighbors (CQKNN) algorithm, which integrates quantum circuits into a conventional machine-learning framework to enhance computational efficiency and reduce storage requirements. This hybrid approach uses a unified quantum circuit that simplifies multiple similarity calculations through mid-circuit measurements and qubit reset operations, significantly improving upon traditional multi-circuit quantum k-nearest neighbors (QKNN) models. The CQKNN algorithm, tested on datasets such as SMS Spam Collection, Twitter US Airline Sentiment, and IMDB Movie Reviews, not only outperforms classical KNN but also addresses challenges posed by noisy intermediate-scale quantum (NISQ) devices through advanced error mitigation techniques. This work highlights resource efficiency and reduced gate complexity and demonstrates the practical application of fidelity in quantum similarity calculations, setting new standards for quantum-enhanced machine learning and advancing current quantum technology capabilities in complex data classification tasks.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202400122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Text classification, a key process in natural language processing (NLP), relies on the k-nearest neighbors (KNN) algorithm for its simplicity and effectiveness. Traditional methods often grapple with the high-dimensional nature of textual data, leading to substantial computational demands. This study introduces a novel classical quantum k-nearest neighbors (CQKNN) algorithm, which integrates quantum circuits into a conventional machine-learning framework to enhance computational efficiency and reduce storage requirements. This hybrid approach uses a unified quantum circuit that simplifies multiple similarity calculations through mid-circuit measurements and qubit reset operations, significantly improving upon traditional multi-circuit quantum k-nearest neighbors (QKNN) models. The CQKNN algorithm, tested on datasets such as SMS Spam Collection, Twitter US Airline Sentiment, and IMDB Movie Reviews, not only outperforms classical KNN but also addresses challenges posed by noisy intermediate-scale quantum (NISQ) devices through advanced error mitigation techniques. This work highlights resource efficiency and reduced gate complexity and demonstrates the practical application of fidelity in quantum similarity calculations, setting new standards for quantum-enhanced machine learning and advancing current quantum technology capabilities in complex data classification tasks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于文本分类的量子增强 K 近邻:使用统一电路和精简量子门的混合方法
文本分类是自然语言处理(NLP)中的一个关键过程,K-近邻(KNN)算法因其简单有效而备受青睐。传统方法通常要应对文本数据的高维特性,导致大量的计算需求。本研究介绍了一种新颖的经典量子 K 近邻(CQKNN)算法,它将量子电路集成到传统的机器学习框架中,以提高计算效率并降低存储要求。这种混合方法使用统一的量子电路,通过电路中间测量和量子比特复位操作简化了多重相似性计算,大大改进了传统的多电路量子k近邻(QKNN)模型。CQKNN 算法在 SMS 垃圾邮件收集、Twitter 美国航空公司情感和 IMDB 电影评论等数据集上进行了测试,其性能不仅优于经典 KNN,还通过先进的错误缓解技术解决了有噪声中量级量子(NISQ)器件带来的挑战。这项工作突出了资源效率和门复杂性的降低,展示了保真度在量子相似性计算中的实际应用,为量子增强机器学习设定了新标准,并推进了当前量子技术在复杂数据分类任务中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
期刊最新文献
Front Cover: Laser Beam Induced Charge Collection for Defect Mapping and Spin State Readout in Diamond (Adv. Quantum Technol. 12/2024) Inside Front Cover: Numerical Investigation of a Coupled Micropillar - Waveguide System for Integrated Quantum Photonic Circuits (Adv. Quantum Technol. 12/2024) Back Cover: Purity-Assisted Zero-Noise Extrapolation for Quantum Error Mitigation (Adv. Quantum Technol. 12/2024) Issue Information (Adv. Quantum Technol. 12/2024) Issue Information (Adv. Quantum Technol. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1