Yan Zhou , Dingfeng Yu , Lei Yang , Yingying Gai , Zezheng Yi , Qing Yuan , Zhen Han , Shunqi Pan
{"title":"Water clarity variations in Jiaozhou Bay over 39 years based on satellite observations","authors":"Yan Zhou , Dingfeng Yu , Lei Yang , Yingying Gai , Zezheng Yi , Qing Yuan , Zhen Han , Shunqi Pan","doi":"10.1016/j.ecss.2024.108895","DOIUrl":null,"url":null,"abstract":"<div><p>Water clarity is an important indicator for the water quality of aquatic ecosystems and measured as Secchi disk depth (Z<sub>SD</sub>). In this study, images from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Landsat Imager (OLI) over the period from 1984 to 2022 are used to study the spatiotemporal variation in Jiaozhou Bay, a typical semi-enclosed bay in China, and to gain the insights into the drivers for the variation during the study period. The satellite images are first processed to obtain Z<sub>SD</sub>, and corrected against the field measurements to ensure the Z<sub>SD</sub> to be high-quality, and then the spatial and temporal distributions of Z<sub>SD</sub> are analysed. The results show that the regional monthly average Z<sub>SD</sub> over the study period are the highest in May and lowest in January. From long-term seasonal observation, it declines most significantly in Summer. In terms of inter-annual variation, the results clearly indicate that 2015 was a turning point, as the regional average Z<sub>SD</sub> decreased significantly from 1984 to 2014 at a rate of approximately 0.022 m/year, but significantly increased from 2015 to 2022 with a rate of about 0.049 m/year. The turning trend of the water clarity in Jiaozhou Bay can be mainly attributed to the increasing sunshine duration during 2015–2022, as well as rapidly reduction emissions of industrial waste from Qingdao city during 2015–2016.</p></div>","PeriodicalId":50497,"journal":{"name":"Estuarine Coastal and Shelf Science","volume":"306 ","pages":"Article 108895"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estuarine Coastal and Shelf Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S027277142400283X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water clarity is an important indicator for the water quality of aquatic ecosystems and measured as Secchi disk depth (ZSD). In this study, images from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Landsat Imager (OLI) over the period from 1984 to 2022 are used to study the spatiotemporal variation in Jiaozhou Bay, a typical semi-enclosed bay in China, and to gain the insights into the drivers for the variation during the study period. The satellite images are first processed to obtain ZSD, and corrected against the field measurements to ensure the ZSD to be high-quality, and then the spatial and temporal distributions of ZSD are analysed. The results show that the regional monthly average ZSD over the study period are the highest in May and lowest in January. From long-term seasonal observation, it declines most significantly in Summer. In terms of inter-annual variation, the results clearly indicate that 2015 was a turning point, as the regional average ZSD decreased significantly from 1984 to 2014 at a rate of approximately 0.022 m/year, but significantly increased from 2015 to 2022 with a rate of about 0.049 m/year. The turning trend of the water clarity in Jiaozhou Bay can be mainly attributed to the increasing sunshine duration during 2015–2022, as well as rapidly reduction emissions of industrial waste from Qingdao city during 2015–2016.
期刊介绍:
Estuarine, Coastal and Shelf Science is an international multidisciplinary journal devoted to the analysis of saline water phenomena ranging from the outer edge of the continental shelf to the upper limits of the tidal zone. The journal provides a unique forum, unifying the multidisciplinary approaches to the study of the oceanography of estuaries, coastal zones, and continental shelf seas. It features original research papers, review papers and short communications treating such disciplines as zoology, botany, geology, sedimentology, physical oceanography.