Artificial Neural Network Based Calibration for a 12 b 250 MS/s Pipelined-SAR ADC With Ring Amplifier in 40-nm CMOS

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems I: Regular Papers Pub Date : 2024-08-01 DOI:10.1109/TCSI.2024.3429309
Bin Liu;Nannan Li;Xuhui Chen;Zhichao Dai;Yufeng Ge;Zheng Jiang;Huanhuan Qi;Jie Zhang;Jinfu Wang;Xiaofei Wang;Zhenhai Chen;Yan Xue;Hong Zhang
{"title":"Artificial Neural Network Based Calibration for a 12 b 250 MS/s Pipelined-SAR ADC With Ring Amplifier in 40-nm CMOS","authors":"Bin Liu;Nannan Li;Xuhui Chen;Zhichao Dai;Yufeng Ge;Zheng Jiang;Huanhuan Qi;Jie Zhang;Jinfu Wang;Xiaofei Wang;Zhenhai Chen;Yan Xue;Hong Zhang","doi":"10.1109/TCSI.2024.3429309","DOIUrl":null,"url":null,"abstract":"This paper presents a 2-stage pipelined-SAR ADC with artificial-neural-network (ANN) based digital calibration algorithm to calibrate the mismatch error in the \n<inline-formula> <tex-math>$1^{\\mathrm {st}}$ </tex-math></inline-formula>\n-stage capacitive DAC (CDAC) and the inter-stage gain error (IGE) together. Previous ANN-based calibration schemes suffer from excessive power and hardware overhead due to the large number of network parameters. To facilitate hardware implementation, the proposed algorithm only requires \n<inline-formula> <tex-math>$N_{1}+1$ </tex-math></inline-formula>\n input parameters (\n<inline-formula> <tex-math>$N_{1}$ </tex-math></inline-formula>\n is the resolution of the \n<inline-formula> <tex-math>$1^{\\mathrm {st}}$ </tex-math></inline-formula>\n-stage SAR ADC), in which the overall output of the \n<inline-formula> <tex-math>$2^{\\mathrm {nd}}$ </tex-math></inline-formula>\n-stage SAR ADC is combined into a single parameter. In addition, the ANN utilizes a single-neuron hidden layer with linear activation function to calculate the actual bit weight of the ADC, remarkably reducing the hardware overhead and power consumption of the calibration circuit. The prototype 12-bit, 250 MS/s pipelined-SAR ADC with “loop-unrolled” architecture is implemented in 40-nm CMOS, in which a ring amplifier with improved bias circuit is used to realize a robust closed-loop gain for residue amplification. With the ANN-based calibration circuit implemented in an FPGA, the calibrated ADC achieves the SNDR of 65.0 dB and the SFDR of 84.0 dB at Nyquist input (124 MHz), with a Schreier figure of merit of 169.0 dB and a Walden figure of merit of 14.0 fJ/conv-step. The ADC core consumes 4.95 mW, with an active area of only 0.013 mm2.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10620219/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a 2-stage pipelined-SAR ADC with artificial-neural-network (ANN) based digital calibration algorithm to calibrate the mismatch error in the $1^{\mathrm {st}}$ -stage capacitive DAC (CDAC) and the inter-stage gain error (IGE) together. Previous ANN-based calibration schemes suffer from excessive power and hardware overhead due to the large number of network parameters. To facilitate hardware implementation, the proposed algorithm only requires $N_{1}+1$ input parameters ( $N_{1}$ is the resolution of the $1^{\mathrm {st}}$ -stage SAR ADC), in which the overall output of the $2^{\mathrm {nd}}$ -stage SAR ADC is combined into a single parameter. In addition, the ANN utilizes a single-neuron hidden layer with linear activation function to calculate the actual bit weight of the ADC, remarkably reducing the hardware overhead and power consumption of the calibration circuit. The prototype 12-bit, 250 MS/s pipelined-SAR ADC with “loop-unrolled” architecture is implemented in 40-nm CMOS, in which a ring amplifier with improved bias circuit is used to realize a robust closed-loop gain for residue amplification. With the ANN-based calibration circuit implemented in an FPGA, the calibrated ADC achieves the SNDR of 65.0 dB and the SFDR of 84.0 dB at Nyquist input (124 MHz), with a Schreier figure of merit of 169.0 dB and a Walden figure of merit of 14.0 fJ/conv-step. The ADC core consumes 4.95 mW, with an active area of only 0.013 mm2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的 12 b 250 MS/s 管排式合成孔径雷达 ADC 校准(40 纳米 CMOS,带环形放大器
本文提出了一种两级流水线 SAR ADC,采用基于人工神经网络(ANN)的数字校准算法来校准 1^{\mathrm {st}}$ - 级电容式 DAC(CDAC)中的失配误差以及级间增益误差(IGE)。以往基于 ANN 的校准方案因网络参数数量庞大而导致功耗和硬件开销过高。为了便于硬件实现,所提出的算法只需要 $N_{1}+1$ 输入参数($N_{1}$ 为 1^{\mathrm {st}}$ - 级 SAR ADC 的分辨率),其中 2^{\mathrm {nd}}$ - 级 SAR ADC 的整体输出被合并为一个参数。此外,ANN 利用具有线性激活函数的单神经元隐层来计算 ADC 的实际位权,从而显著降低了校准电路的硬件开销和功耗。12 位、250 MS/s 的流水线 SAR ADC 原型采用 "不滚环 "架构,在 40-nm CMOS 中实现,其中环形放大器采用改进的偏置电路,以实现稳健的残差放大闭环增益。通过在 FPGA 中实施基于 ANN 的校准电路,校准后的 ADC 在奈奎斯特输入(124 MHz)下的 SNDR 达到 65.0 dB,SFDR 达到 84.0 dB,Schreier 优点值为 169.0 dB,Walden 优点值为 14.0 fJ/conv-step。ADC 内核功耗为 4.95 mW,有效面积仅为 0.013 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Circuits and Systems Society Information TechRxiv: Share Your Preprint Research with the World! IEEE Transactions on Circuits and Systems--I: Regular Papers Information for Authors Guest Editorial Special Issue on the International Symposium on Integrated Circuits and Systems—ISICAS 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1